Sign Pose-based Transformer for Word-level Sign Language Recognition
dc.contributor.author | Boháček, Matyáš | |
dc.contributor.author | Hrúz, Marek | |
dc.date.accessioned | 2023-02-13T11:00:21Z | |
dc.date.available | 2023-02-13T11:00:21Z | |
dc.date.issued | 2022 | |
dc.description.abstract-translated | In this paper we present a system for word-level sign language recognition based on the Transformer model. We aim at a solution with low computational cost, since we see great potential in the usage of such recognition system on hand-held devices. We base the recognition on the estimation of the pose of the human body in the form of 2D landmark locations. We introduce a robust pose normalization scheme which takes the signing space in consideration and processes the hand poses in a separate local coordinate system, independent on the body pose. We show experimentally the significant impact of this normalization on the accuracy of our proposed system. We introduce several augmentations of the body pose that further improve the accuracy, including a novel sequential joint rotation augmentation. With all the systems in place, we achieve state of the art top-1 results on the WLASL and LSA64 datasets. For WLASL, we are able to successfully recognize 63.18 % of sign recordings in the 100-gloss subset, which is a relative improvement of 5 % from the prior state of the art. For the 300-gloss subset, we achieve recognition rate of 43.78 % which is a relative improvement of 3.8 %. With the LSA64 dataset, we report test recognition accuracy of 100 %. | en |
dc.format | 10 s. | cs |
dc.format.mimetype | application/pdf | |
dc.identifier.citation | BOHÁČEK, M. HRÚZ, M. Sign Pose-based Transformer for Word-level Sign Language Recognition. In Proceedings - 2022 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops. New York: IEEE, 2022. s. 182-191. ISBN: 978-1-66545-824-5 , ISSN: 2572-4398 | cs |
dc.identifier.document-number | 802187100020 | |
dc.identifier.doi | 10.1109/WACVW54805.2022.00024 | |
dc.identifier.isbn | 978-1-66545-824-5 | |
dc.identifier.issn | 2572-4398 | |
dc.identifier.obd | 43937109 | |
dc.identifier.uri | 2-s2.0-85126778924 | |
dc.identifier.uri | http://hdl.handle.net/11025/51463 | |
dc.language.iso | en | en |
dc.project.ID | LM2018101/LINDAT/CLARIAH-CZ – Digitální výzkumná infrastruktura pro jazykové technologie, umění a humanitní vědy | cs |
dc.project.ID | 90140/Velká výzkumná infrastruktura_(J) - e-INFRA CZ | cs |
dc.publisher | IEEE | en |
dc.relation.ispartofseries | Proceedings - 2022 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops | en |
dc.rights | Plný text je přístupný v rámci univerzity přihlášeným uživatelům. | cs |
dc.rights | © IEEE | en |
dc.rights.access | restrictedAccess | en |
dc.subject.translated | training | en |
dc.subject.translated | visualization | en |
dc.subject.translated | computational modeling | en |
dc.subject.translated | gesture recognition | en |
dc.subject.translated | assistive technologies | en |
dc.subject.translated | transformers | en |
dc.subject.translated | data models | en |
dc.title | Sign Pose-based Transformer for Word-level Sign Language Recognition | en |
dc.type | konferenční příspěvek | cs |
dc.type | ConferenceObject | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
Files
Original bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- Bohacek_Hruz_Sign_Pose-based_Transformer_WACVW_2022.pdf
- Size:
- 840.81 KB
- Format:
- Adobe Portable Document Format