Sign Pose-based Transformer for Word-level Sign Language Recognition

dc.contributor.authorBoháček, Matyáš
dc.contributor.authorHrúz, Marek
dc.date.accessioned2023-02-13T11:00:21Z
dc.date.available2023-02-13T11:00:21Z
dc.date.issued2022
dc.description.abstract-translatedIn this paper we present a system for word-level sign language recognition based on the Transformer model. We aim at a solution with low computational cost, since we see great potential in the usage of such recognition system on hand-held devices. We base the recognition on the estimation of the pose of the human body in the form of 2D landmark locations. We introduce a robust pose normalization scheme which takes the signing space in consideration and processes the hand poses in a separate local coordinate system, independent on the body pose. We show experimentally the significant impact of this normalization on the accuracy of our proposed system. We introduce several augmentations of the body pose that further improve the accuracy, including a novel sequential joint rotation augmentation. With all the systems in place, we achieve state of the art top-1 results on the WLASL and LSA64 datasets. For WLASL, we are able to successfully recognize 63.18 % of sign recordings in the 100-gloss subset, which is a relative improvement of 5 % from the prior state of the art. For the 300-gloss subset, we achieve recognition rate of 43.78 % which is a relative improvement of 3.8 %. With the LSA64 dataset, we report test recognition accuracy of 100 %.en
dc.format10 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationBOHÁČEK, M. HRÚZ, M. Sign Pose-based Transformer for Word-level Sign Language Recognition. In Proceedings - 2022 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops. New York: IEEE, 2022. s. 182-191. ISBN: 978-1-66545-824-5 , ISSN: 2572-4398cs
dc.identifier.document-number802187100020
dc.identifier.doi10.1109/WACVW54805.2022.00024
dc.identifier.isbn978-1-66545-824-5
dc.identifier.issn2572-4398
dc.identifier.obd43937109
dc.identifier.uri2-s2.0-85126778924
dc.identifier.urihttp://hdl.handle.net/11025/51463
dc.language.isoenen
dc.project.IDLM2018101/LINDAT/CLARIAH-CZ – Digitální výzkumná infrastruktura pro jazykové technologie, umění a humanitní vědycs
dc.project.ID90140/Velká výzkumná infrastruktura_(J) - e-INFRA CZcs
dc.publisherIEEEen
dc.relation.ispartofseriesProceedings - 2022 IEEE/CVF Winter Conference on Applications of Computer Vision Workshopsen
dc.rightsPlný text je přístupný v rámci univerzity přihlášeným uživatelům.cs
dc.rights© IEEEen
dc.rights.accessrestrictedAccessen
dc.subject.translatedtrainingen
dc.subject.translatedvisualizationen
dc.subject.translatedcomputational modelingen
dc.subject.translatedgesture recognitionen
dc.subject.translatedassistive technologiesen
dc.subject.translatedtransformersen
dc.subject.translateddata modelsen
dc.titleSign Pose-based Transformer for Word-level Sign Language Recognitionen
dc.typekonferenční příspěvekcs
dc.typeConferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
Bohacek_Hruz_Sign_Pose-based_Transformer_WACVW_2022.pdf
Size:
840.81 KB
Format:
Adobe Portable Document Format