Point-Mass Filter with Decomposition of Transient Density
| dc.contributor.author | Tichavský, Petr | |
| dc.contributor.author | Straka, Ondřej | |
| dc.contributor.author | Duník, Jindřich | |
| dc.date.accessioned | 2023-02-13T11:00:20Z | |
| dc.date.available | 2023-02-13T11:00:20Z | |
| dc.date.issued | 2022 | |
| dc.description.abstract-translated | The paper deals with the state estimation of nonlinear stochastic dynamic systems with special attention on a grid-based numerical solution to the Bayesian recursive relations, the point-mass filter (PMF). In the paper, a novel functional decomposition of the transient density describing the system dynamics is proposed. The decomposition is based on a non-negative matrix factorization and separates the density into functions of the future and current states. Such decomposition facilitates a thrifty calculation of the convolution, which is a bottleneck of the PMF performance. The PMF estimate quality and computational costs can be efficiently controlled by choosing an appropriate rank of the decomposition. The performance of the PMF with the transient density decomposition is illustrated in a terrain-aided navigation scenario. | en |
| dc.format | 5 s. | cs |
| dc.format.mimetype | application/pdf | |
| dc.identifier.citation | TICHAVSKÝ, P. STRAKA, O. DUNÍK, J. Point-Mass Filter with Decomposition of Transient Density. In Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Singapore: IEEE, 2022. s. 5752-5756. ISBN: 978-1-66540-540-9 , ISSN: 1520-6149 | cs |
| dc.identifier.document-number | 864187906010 | |
| dc.identifier.doi | 10.1109/ICASSP43922.2022.9747607 | |
| dc.identifier.isbn | 978-1-66540-540-9 | |
| dc.identifier.issn | 1520-6149 | |
| dc.identifier.obd | 43937076 | |
| dc.identifier.uri | 2-s2.0-85131241649 | |
| dc.identifier.uri | http://hdl.handle.net/11025/51458 | |
| dc.language.iso | en | en |
| dc.project.ID | SGS-2022-022/Rozvoj a využití kybernetických systémů identifikace, diagnostiky a řízení 5 | cs |
| dc.project.ID | GA22-11101S/Tenzorový rozklad v aktivní diagnostice poruch pro stochastické rozlehlé systémy | cs |
| dc.publisher | IEEE | en |
| dc.relation.ispartofseries | Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) | en |
| dc.rights | Plný text je přístupný v rámci univerzity přihlášeným uživatelům. | cs |
| dc.rights | © IEEE | en |
| dc.rights.access | restrictedAccess | en |
| dc.subject.translated | State estimation | en |
| dc.subject.translated | filtering, nonlinear systems | en |
| dc.subject.translated | point-mass method | en |
| dc.subject.translated | non-negative matrix factorization | en |
| dc.title | Point-Mass Filter with Decomposition of Transient Density | en |
| dc.type | konferenční příspěvek | cs |
| dc.type | ConferenceObject | en |
| dc.type.status | Peer-reviewed | en |
| dc.type.version | publishedVersion | en |
Files
Original bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- article_ICASSP_TiStDu.pdf
- Size:
- 1.62 MB
- Format:
- Adobe Portable Document Format