Text-to-Text Transfer Transformer Phrasing Model Using Enriched Text Input

dc.contributor.authorŘezáčková, Markéta
dc.contributor.authorMatoušek, Jindřich
dc.date.accessioned2023-01-16T11:00:16Z
dc.date.available2023-01-16T11:00:16Z
dc.date.issued2022
dc.description.abstract-translatedAppropriate prosodic phrasing of the input text is crucial for natural speech synthesis outputs. The presented paper focuses on using a Text-to-Text Transfer Transformer for predicting phrase boundaries in text and inspects the possibility of enriching the input text with more detailed information to improve the success rate of the phrasing model trained on plain text. This idea came from our previous research on phrasing that showed that more detailed syntactic/semantic information might lead to more accurate predicting of phrase boundaries.en
dc.format12 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationŘEZÁČKOVÁ, M. MATOUŠEK, J. Text-to-Text Transfer Transformer Phrasing Model Using Enriched Text Input. In Text, Speech, and Dialogue 25th International Conference, TSD 2022, Brno, Czech Republic, September 6–9, 2022, Proceedings. Cham: Springer International Publishing, 2022. s. 389-400. ISBN: 978-3-031-16269-5 , ISSN: 0302-9743cs
dc.identifier.doi10.1007/978-3-031-16270-1_32
dc.identifier.isbn978-3-031-16269-5
dc.identifier.issn0302-9743
dc.identifier.obd43936698
dc.identifier.uri2-s2.0-85139025870
dc.identifier.urihttp://hdl.handle.net/11025/50926
dc.language.isoenen
dc.project.IDGA21-14758S/Prozodická fráze v současné mluvené češtině: význam, rovnováha, stochastické vzorcecs
dc.project.IDSGS-2022-017/Inteligentní metody strojového vnímání a porozumění 5cs
dc.project.ID90140/Velká výzkumná infrastruktura_(J) - e-INFRA CZcs
dc.publisherSpringer International Publishingen
dc.relation.ispartofseriesText, Speech, and Dialogue 25th International Conference, TSD 2022, Brno, Czech Republic, September 6–9, 2022, Proceedingsen
dc.rightsPlný text je přístupný v rámci univerzity přihlášeným uživatelům.cs
dc.rights© Springer Nature Switzerland AGen
dc.rights.accessrestrictedAccessen
dc.subject.translatedPhrasingen
dc.subject.translatedProsodic boundariesen
dc.subject.translatedT5en
dc.subject.translatedPart-of-Speech tagsen
dc.subject.translatedSyntactic categoriesen
dc.titleText-to-Text Transfer Transformer Phrasing Model Using Enriched Text Inputen
dc.typekonferenční příspěvekcs
dc.typeConferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
Rezackova_Matousek-Text-to-Text_Transfer_TSD_2022.pdf
Size:
260.95 KB
Format:
Adobe Portable Document Format