Efficient Implementation of Marginal Particle Filter by Functional Density Decomposition

dc.contributor.authorStraka, Ondřej
dc.contributor.authorDuník, Jindřich
dc.date.accessioned2023-02-13T11:00:20Z
dc.date.available2023-02-13T11:00:20Z
dc.date.issued2022
dc.description.abstract-translatedThe paper considers the solution to the state estimation problem of nonlinear dynamic stochastic systems by the particle filters. It focuses on the marginal particle filter algorithms which generate samples directly in the marginal space for the recent state. Their standard implementation calculates the sample weights by combining the samples from two consecutive time instants in the transition and proposal density function evaluations. This results in computational complexity quadratic in sample size. The paper proposes an efficient implementation of the marginal particle filter for which a functional tensor decomposition of the transition and proposal densities is calculated. The computational complexity of the proposed implementation is linear in sample size and the decomposition rank can be used to achieve a trade-off between accuracy and computational costs. The balance between the complexity and the estimate quality can be tuned by selecting the rank of the decomposition. The proposed implementation is demonstrated using two numerical examples with a univariate non-stationary growth model and terrain-aided navigation scenario.en
dc.format8 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationSTRAKA, O. DUNÍK, J. Efficient Implementation of Marginal Particle Filter by Functional Density Decomposition. In Proceedings of the 25th International Conference on Information Fusion, FUSION 2022. Linköping, Sweden: IEEE, 2022. s. 1-8. ISBN: 978-1-73774-972-1 , ISSN: neuvedenocs
dc.identifier.document-number855689000167
dc.identifier.doi10.23919/FUSION49751.2022.9841367
dc.identifier.isbn978-1-73774-972-1
dc.identifier.issnneuvedeno
dc.identifier.obd43937079
dc.identifier.uri2-s2.0-85136560671
dc.identifier.urihttp://hdl.handle.net/11025/51460
dc.language.isoenen
dc.project.IDSGS-2022-022/Rozvoj a využití kybernetických systémů identifikace, diagnostiky a řízení 5cs
dc.project.IDGA22-11101S/Tenzorový rozklad v aktivní diagnostice poruch pro stochastické rozlehlé systémycs
dc.publisherIEEEen
dc.relation.ispartofseriesProceedings of the 25th International Conference on Information Fusion, FUSION 2022en
dc.rightsPlný text je přístupný v rámci univerzity přihlášeným uživatelům.cs
dc.rights© IEEEen
dc.rights.accessrestrictedAccessen
dc.subject.translatedstate estimationen
dc.subject.translatedparticle filteren
dc.subject.translatedmarginal particle filteren
dc.subject.translatedfunctional tensor decompositionen
dc.subject.translatednon-negative decompositionen
dc.titleEfficient Implementation of Marginal Particle Filter by Functional Density Decompositionen
dc.typekonferenční příspěvekcs
dc.typeConferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
article_FUSION2022_StDu.pdf
Size:
464.02 KB
Format:
Adobe Portable Document Format