Plant recognition by AI: Deep neural nets, transformers, and kNN in deep embeddings
| dc.contributor.author | Picek, Lukáš | |
| dc.contributor.author | Šulc, Milan | |
| dc.contributor.author | Patel, Yash | |
| dc.contributor.author | Matas, Jiří | |
| dc.date.accessioned | 2023-01-30T11:00:29Z | |
| dc.date.available | 2023-01-30T11:00:29Z | |
| dc.date.issued | 2022 | |
| dc.description.abstract-translated | The article reviews and benchmarks machine learning methods for automatic image-based plant species recognition and proposes a novel retrieval-based method for recognition by nearest neighbor classification in a deep embedding space. The image retrieval method relies on a model trained via the Recall@k surrogate loss. State-of-the-art approaches to image classification, based on Convolutional Neural Networks (CNN) and Vision Transformers (ViT), are benchmarked and compared with the proposed image retrieval-based method. The impact of performance-enhancing techniques, e.g., class prior adaptation, image augmentations, learning rate scheduling, and loss functions, is studied. The evaluation is carried out on the PlantCLEF 2017, the ExpertLifeCLEF 2018, and the iNaturalist 2018 Datasets-the largest publicly available datasets for plant recognition. The evaluation of CNN and ViT classifiers shows a gradual improvement in classification accuracy. The current state-of-the-art Vision Transformer model, ViT-Large/16, achieves 91.15% and 83.54% accuracy on the PlantCLEF 2017 and ExpertLifeCLEF 2018 test sets, respectively; the best CNN model (ResNeSt-269e) error rate dropped by 22.91% and 28.34%. Apart from that, additional tricks increased the performance for the ViT-Base/32 by 3.72% on ExpertLifeCLEF 2018 and by 4.67% on PlantCLEF 2017. The retrieval approach achieved superior performance in all measured scenarios with accuracy margins of 0.28%, 4.13%, and 10.25% on ExpertLifeCLEF 2018, PlantCLEF 2017, and iNat2018-Plantae, respectively. | en |
| dc.format | 16 s. | cs |
| dc.format.mimetype | application/pdf | |
| dc.identifier.citation | PICEK, L. ŠULC, M. PATEL, Y. MATAS, J. Plant recognition by AI: Deep neural nets, transformers, and kNN in deep embeddings. Frontiers in Plant Science, 2022, roč. 13, č. September, s. 1-16. ISSN: 1664-462X | cs |
| dc.identifier.document-number | 868264700001 | |
| dc.identifier.doi | 10.3389/fpls.2022.787527 | |
| dc.identifier.issn | 1664-462X | |
| dc.identifier.obd | 43937116 | |
| dc.identifier.uri | 2-s2.0-85139567145 | |
| dc.identifier.uri | http://hdl.handle.net/11025/51180 | |
| dc.language.iso | en | en |
| dc.project.ID | SS05010008/Detekce, identifikace a monitoring živočichů pokročilými metodami počítačového vidění | cs |
| dc.project.ID | SGS-2022-017/Inteligentní metody strojového vnímání a porozumění 5 | cs |
| dc.project.ID | 90140/Velká výzkumná infrastruktura_(J) - e-INFRA CZ | cs |
| dc.publisher | Frontiers Media S.A. | en |
| dc.relation.ispartofseries | Frontiers in Plant Science | en |
| dc.rights | © authors | en |
| dc.rights.access | openAccess | en |
| dc.subject.translated | plant | en |
| dc.subject.translated | species | en |
| dc.subject.translated | classification | en |
| dc.subject.translated | recognition | en |
| dc.subject.translated | machine learning | en |
| dc.subject.translated | computer vision | en |
| dc.subject.translated | species recognition | en |
| dc.subject.translated | fine-grained | en |
| dc.title | Plant recognition by AI: Deep neural nets, transformers, and kNN in deep embeddings | en |
| dc.type | článek | cs |
| dc.type | article | en |
| dc.type.status | Peer-reviewed | en |
| dc.type.version | publishedVersion | en |
Files
Original bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- Picek_Plant_Recognition_by_AI_092022.pdf
- Size:
- 3.32 MB
- Format:
- Adobe Portable Document Format