Rekonstrukce pózy lidské ruky z hloubkového obrazu
dc.contributor.advisor | Krňoul Zdeněk, Ing. Ph.D. | |
dc.contributor.author | Herbig, Milan | |
dc.contributor.referee | Hrúz Marek, Ing. Ph.D. | |
dc.date.accepted | 2016-6-21 | |
dc.date.accessioned | 2017-02-21T08:27:28Z | |
dc.date.available | 2015-10-1 | |
dc.date.available | 2017-02-21T08:27:28Z | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-5-12 | |
dc.description.abstract | Téma práce je zaměřeno na aplikaci state-of-the-art konvolučních neuronových sítí za účelem rekonstrukce pózy lidské ruky z hloubkových dat pořízených kamerou Microsoft Kinect v2. V práci se věnuji současným metodám a přístupům k rekonstrukci pózy, problémům spojeným s trénováním neuronových sítí, tvorbě trénovacích dat, jejich normalizaci a konečně návrhu samotné architektury neuronové sítě pro účely regrese pózy lidské ruky. V závěru diskutuji dosažené výsledky. Výstupem práce je jednak navržená architektura konvoluční neuronové sítě a jednak natrénovaný model. Zároveň jsem vytvořil modul pro snímání a segmentaci hloubkových dat z kamery včetně modulu pro vizualizaci výsledků rekonstrukce. Celý systém běží v reálném čase s využitím výpočtů na grafické kartě. | cs |
dc.description.abstract-translated | This thesis explores possibilities and contributions of state-of-the-art convolutional neural networks to hand pose estimation problem. Hand pose is estimated from depth images recorded by Microsoft Kinect v2 depth camera. Current hand estimation methods and neural networks in general are discussed. The focus is set on problems during neural network training, data creation and normalization. Whole chapter is devoted to regression convolution neural network model design. Finally, observed results are discussed in the last chapter. This work produces both proposed and trained neural network model. Also, for real-word testing and demonstration purposes, both segmentation and visualization modules were developed. It is worth noting that whole pipeline runs in real time on GPU. | en |
dc.description.result | Obhájeno | cs |
dc.format | 71 s. | cs |
dc.format.mimetype | application/pdf | |
dc.identifier | 68089 | |
dc.identifier.uri | http://hdl.handle.net/11025/23643 | |
dc.language.iso | cs | cs |
dc.publisher | Západočeská univerzita v Plzni | cs |
dc.relation.isreferencedby | https://portal.zcu.cz/StagPortletsJSR168/CleanUrl?urlid=prohlizeni-prace-detail&praceIdno=68089 | |
dc.rights | Plný text práce je přístupný bez omezení. | cs |
dc.rights.access | openAccess | en |
dc.subject | regrese | cs |
dc.subject | odhad parametrů | cs |
dc.subject | rekonstrukce pózy | cs |
dc.subject | 3d model | cs |
dc.subject | strojové učení | cs |
dc.subject | konvoluční neuronová síť | cs |
dc.subject.translated | regression | en |
dc.subject.translated | parameter estimation | en |
dc.subject.translated | pose reconstruction | en |
dc.subject.translated | 3d model | en |
dc.subject.translated | machine learning | en |
dc.subject.translated | convolutional neural network | en |
dc.thesis.degree-grantor | Západočeská univerzita v Plzni. Fakulta aplikovaných věd | cs |
dc.thesis.degree-level | Navazující | cs |
dc.thesis.degree-name | Ing. | cs |
dc.thesis.degree-program | Inženýrská informatika | cs |
dc.title | Rekonstrukce pózy lidské ruky z hloubkového obrazu | cs |
dc.title.alternative | Depth-based hand pose estimation | en |
dc.type | diplomová práce | cs |
Files
Original bundle
1 - 4 out of 4 results
No Thumbnail Available
- Name:
- dipl_prace_final.pdf
- Size:
- 9.52 MB
- Format:
- Adobe Portable Document Format
- Description:
- Plný text práce
No Thumbnail Available
- Name:
- herbig-v.pdf
- Size:
- 799.1 KB
- Format:
- Adobe Portable Document Format
- Description:
- Posudek vedoucího práce
No Thumbnail Available
- Name:
- herbig-o.pdf
- Size:
- 664.35 KB
- Format:
- Adobe Portable Document Format
- Description:
- Posudek oponenta práce
No Thumbnail Available
- Name:
- herbig-p.pdf
- Size:
- 437.35 KB
- Format:
- Adobe Portable Document Format
- Description:
- Průběh obhajoby práce