The Fucik spectrum of the discrete Dirichlet operator
Date issued
2018
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Abstract
V tomto článku se zabýváme diskrétním Dirichletovým operátorem druhého řádu a zkoumáme jeho Fučíkovo spektrum, které se skládá z konečného počtu algebraických křivek. Pro každou netriviální Fučíkovu křivku jsme schopni explicitně popsat konečný počet bodů, které jí náleží. Pomocí Čebyševových polynomů druhého druhu dále poskytujeme přesný implicitní popis všech netriviálních Fučíkových křivek. Navíc pro každou netriviální Fučíkovu křivku uvádíme hned několik různých implicitních popisů, které se liší úrovní hloubky vnoření použitých složených funkcí. Náš přístup je založen na Möbiově transformaci a na vhodném spojitém rozšíření řešení diskrétního problému. Poznamenejme, že všechny předkládané popisy Fučíkových křivek mají tvar nutných a postačujících podmínek. Náš přístup lze také přímo použít i v případě operátorů druhého řádu s jinými lokálními okrajovými podmínkami.
Description
Subject(s)
asymetrické nelinearity, Chebyshevovy polynomy druhého druhu, diferenční operátory, Fučíkovo spektrum, Möbiova transformace, Möbiova matice, homogenní souřadnice
Citation
LOOSEOVÁ, I., NEČESAL, P. The Fucik spectrum of the discrete Dirichlet operator. LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, roč. 553, č. SEP 15 2018, s. 58-103. ISSN 0024-3795.