Multi-lingual Dialogue Act Recognition with Deep Learning Methods
Date issued
2019
Journal Title
Journal ISSN
Volume Title
Publisher
International Speech Communication Association (ISCA)
Abstract
Článek se zabývá vícejazyčným rozpoznávání dialogových aktů. Navržené metody jsou založeny na hlubokých neuronových sítích a používají word2vec slovní vektory pro reprezentaci slov. Prezentovány jsou dvě metody. První z nich používá jeden obecný model trénovaný na všech dostupných jazycích, zatímco druhý se natrénuje pouze na jednom jazyku a pomocí lineární transformace dochází k projekci prostorů na zvolený jazyk. Jako klasifikátor jsou použity populární konvoluční neuronové sítě a LSTM. Dle našeho mínění jde o jednu z prvních metod pro vícejazyčnou klasifikaci dialogových aktů pomocí neuronových sítí. Modely jsou testovány experimentálně na dvoujazyčném korpusu Verbmobil
Description
Subject(s)
Konvoluční neuronová síť, Hluboké učení, Long Short-Term Memory, Vícejazyčnost, Word2Vec, Dialogové akty
Citation
MARTÍNEK, J. LENC, L. KRÁL, P. CERISARA, Ch. Multi-lingual Dialogue Act Recognition with Deep Learning Methods. In 20th Annual Conference of the International Speech Communication, Interspeech 2019. Baixas: International Speech Communication Association (ISCA), 2019. s. 1463-1467. ISBN: 978-1-5108-9683-3 , ISSN: 2308-457X