Okrajové úlohy pro singulární a degenerované diferenciální rovnice - jejich spektrální vlastnosti, řešitelnost, bifurkace, aproximace řešení

dc.contributor.advisorGirg, Petr
dc.contributor.authorKotrla, Lukáš
dc.contributor.refereeTomiczek, Petr
dc.date.accepted2014-06-18
dc.date.accessioned2015-03-25T09:46:24Z
dc.date.available2013-10-01cs
dc.date.available2015-03-25T09:46:24Z
dc.date.issued2014
dc.date.submitted2014-05-22
dc.description.abstractDiplomová práce je zaměřena na studování nelineární diferenciální rovnice s p-Laplacovým operátorem, ve které závisí funkce zdroje na parametru, prostorové proměnné, neznámé funkci a její derivaci. Dále se předpokládá, že zdrojová funkce je rozložitelná na (p-1)-homogenní část a omezenou perturbaci. Pro danou rovnici je v práci dokázána Krasnoselského nutnou podmínku pro první vlastní číslo záporného p-Laplaciánu. V další části jsou úvahy omezené na jednodimenzionální případ a je zde dokázán klíčový odhad pro analogii k Dancerově větě pro studovanou úlohu. Zbytek práce tvoří komentáře k člákům autora napsaným společně s vedoucím práce doc. ing. Petrem Girgem, Ph.D. V prvním z nich se studuje diferencovatelnost funkce sin_p a možnost jejího rozvoje v Maclaurinovu řadu. Druhý je zaměřený na rozšíření funkce sin_p do komplexního oboru pro sudá p.cs
dc.description.abstract-translatedThis diploma thesis is focused on study of nonlinear differential equation involving p-Laplace operater, in which source term depend on parameter, space variable, unknown function and its derivative. We also assume that source term can be decompose on (p-1)-homogeneous part and bounded perturbation. For given equation, we prove Krasnoselskii type necessary condition for the first eigenvalue of negative p-Laplacian. Then we restrict our attention to one-dimensional case and we prove the key estimate of analogy of Dancer's Theorem. The rest of this thesis is devoted to brief comments of author's papers, which were written in cooperation with author's mentor doc. ing. Petr Girg, Ph.D. The first paper is focused on the differentiability of function sin_p and the possibility of its expression as the convergent Maclaurin series. In the second paper we generalize sin_p to complex domain for p be an even integer.en
dc.description.departmentKatedra matematikycs
dc.description.resultObhájenocs
dc.format35 s., 27 s., 16 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier58900
dc.identifier.urihttp://hdl.handle.net/11025/14667
dc.language.isoenen
dc.publisherZápadočeská univerzita v Plznics
dc.rightsPlný text práce je přístupný bez omezení.cs
dc.rights.accessopenAccessen
dc.subjectp-Laplaciáncs
dc.subjectbifurkacecs
dc.subjectKrasnoselského nutná podmínkacs
dc.subjectp-trigonometrické funkcecs
dc.subjectdiferencovatelnostcs
dc.subjectspojitostcs
dc.subjectkomplexní proměnnács
dc.subject.translatedp-Laplacianen
dc.subject.translatedbifurcationsen
dc.subject.translatedKrasnoselskii type necessary conditionen
dc.subject.translatedp-trigonometric functionsen
dc.subject.translateddifferentiabilityen
dc.subject.translatedcontinuityen
dc.subject.translatedcomplex domainen
dc.thesis.degree-grantorZápadočeská univerzita v Plzni. Fakulta aplikovaných vědcs
dc.thesis.degree-levelNavazujícícs
dc.thesis.degree-nameIng.cs
dc.thesis.degree-programAplikované vědy a informatikacs
dc.titleOkrajové úlohy pro singulární a degenerované diferenciální rovnice - jejich spektrální vlastnosti, řešitelnost, bifurkace, aproximace řešenícs
dc.title.alternativeBVPs for singular/degenerated differential equations - spectral properties, solvability, bifurcation, approximationen
dc.title.otherOkrajové úlohy pro singulární a degenerované diferenciální rovnice - spektrální vlastnosti, řešitelnost, bifurkace, aproximacecs
dc.typediplomová prácecs
local.relation.IShttps://portal.zcu.cz/StagPortletsJSR168/CleanUrl?urlid=prohlizeni-prace-detail&praceIdno=58900

Files

Original bundle
Showing 1 - 4 out of 4 results
No Thumbnail Available
Name:
DP-Kotrla.pdf
Size:
3.84 MB
Format:
Adobe Portable Document Format
Description:
Plný text práce
No Thumbnail Available
Name:
PV-Kotrla.pdf
Size:
236.54 KB
Format:
Adobe Portable Document Format
Description:
Posudek vedoucího práce
No Thumbnail Available
Name:
PO-Kotrla.pdf
Size:
107.02 KB
Format:
Adobe Portable Document Format
Description:
Posudek oponenta práce
No Thumbnail Available
Name:
P-Kotrla.pdf
Size:
37.47 KB
Format:
Adobe Portable Document Format
Description:
Průběh obhajoby práce

Collections