Solving evolutionary problems using recurrent neural networks
| dc.contributor.author | Petrášová, Iveta | |
| dc.contributor.author | Karban, Pavel | |
| dc.date.accessioned | 2023-12-11T11:00:08Z | |
| dc.date.available | 2023-12-11T11:00:08Z | |
| dc.date.issued | 2023 | |
| dc.description.abstract-translated | A technique for flexible control of induction baking of electrically non-conductive layers (paints, varnishes, resins, etc.) is presented, based on the temperature prediction. As the numerical solution of the full model of the process takes a long time, it is necessary to approximate it with a suitable equivalent model. In this case, recurrent neural networks (RNNs) prove to be a powerful tool for solving the task practically online and providing the input data to control the field current fast enough. The methodology was first tested to predict the current based on the knowledge of the voltage, which can be determined from the analytical solution of the ordinary differential equation that describes the feeding circuit. Subsequently, the methodology was implemented on a system for baking non-conductive layers. | en |
| dc.format | ||
| dc.format | 10 s. | cs |
| dc.format.mimetype | application/pdf | |
| dc.identifier.citation | PETRÁŠOVÁ, I. KARBAN, P. Solving evolutionary problems using recurrent neural networks . JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, roč. 426, č. July 2023, s. nestránkováno. ISSN: 0377-0427 | cs |
| dc.identifier.document-number | 944208200001 | |
| dc.identifier.doi | 10.1016/j.cam.2023.115091 | |
| dc.identifier.issn | 0377-0427 | |
| dc.identifier.obd | 43940812 | |
| dc.identifier.uri | 2-s2.0-85147854346 | |
| dc.identifier.uri | http://hdl.handle.net/11025/54959 | |
| dc.language.iso | ||
| dc.language.iso | en | en |
| dc.project.ID | SGS-2021-011/Rozvoj technik snižování řádu systému v elektrotechnických aplikacích | cs |
| dc.publisher | Elsevier | en |
| dc.relation.ispartofseries | Journal Of Computational And Applied Mathematics | en |
| dc.rights | © Elsevier | en |
| dc.rights.access | openAccess | en |
| dc.subject.translated | evolutionary problem | en |
| dc.subject.translated | prediction | en |
| dc.subject.translated | recurrent neural networks | en |
| dc.subject.translated | LSTM | en |
| dc.subject.translated | induction heating | en |
| dc.subject.translated | numerical modeling | en |
| dc.title | Solving evolutionary problems using recurrent neural networks | en |
| dc.type | článek | cs |
| dc.type | article | en |
| dc.type.status | ||
| dc.type.status | Peer-reviewed | en |
| dc.type.version | publishedVersion | en |
Files
Original bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- Petrasova_1-s2.0-S0377042723000353-main.pdf
- Size:
- 1.19 MB
- Format:
- Adobe Portable Document Format