Dynamické modely v matematické ekonomii
Date issued
2017
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Západočeská univerzita v Plzni
Abstract
V této práci se zabýváme matematickým modelováním difúze mezi oddělenými oblastmi, jejichž vzájemná propojení modelujeme grafy. S pomocí teorie grafů a obyčejných diferenciálních rovnic vytvoříme jednoduchý difúzní model nad grafem se dvěma vrcholy, který následně zobecníme pro libovolný souvislý neorientovaný graf.
Difúzi zde nechápeme pouze jako přesun z oblastí s vyšší koncentrací do oblastí s nižší koncentrací, ale jako obecnější proces přesunu daný difúzní funkcí. Je-li difúzní funkce lineární, modelujeme difúzi v již popsaném klasickém pojetí. Zvolíme-li ji ale nelineární, můžeme modelovat složitější procesy, např. shlukování a koexistence.
Po formálním vybudování modelů následují v případě grafu se dvěma vrcholy a lineární difúze pro libovolný graf poznatky o asymptotickém chování. Práce je doplněna numerickými experimenty i v případě shlukování a koexistence pro obecný graf, které nastiňují možné směry dalšího zdokonalování modelů a demonstrují několik nevyřešených otázek k analýze modelů představených v této práci.
Description
Subject(s)
difúze, matematická analýza, diferenciální rovnice, matematické modelování, autonomní dynamický systém, graf, spolupráce