An influence of unilateral sources and sinks in reaction-diffusion systems exhibiting Turing's instability on bifurcation and pattern formation

dc.contributor.authorFencl, Martin
dc.date.accessioned2020-03-23T11:00:27Z
dc.date.available2020-03-23T11:00:27Z
dc.date.issued2020
dc.description.abstractWe consider a general reaction-diffusion system exhibiting Turing's diffusion-driven instability. In the first part of the paper, we supplement the activator equation by unilateral integral sources and sinks of the type $\left(\int_{K} \frac{u(x)}{\left| K \right|} \; dK \right)^{-}$ and $\left(\int_{K} \frac{u(x)}{\left| K \right|} \; dK \right)^{+}$. These terms measure an average of the concentration over the set $K$ and are active only when this average decreases bellow or increases above the value of the reference spatially homogeneous steady state, which is shifted to the origin. We show that the set of diffusion parameters in which spatially heterogeneous stationary solutions can bifurcate from the reference state is smaller than in the classical case without any unilateral integral terms. This problem is studied for the case of mixed, pure Neumann and periodic boundary conditions. In the second part of the paper, we investigate the effect of both unilateral terms of the type $u^{-},u^{+}$ and unilateral integral terms on the pattern formation using numerical experiments on the system with well-known Schnakenberg kinetics.en
dc.format26 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationFENCL, M. An influence of unilateral sources and sinks in reaction-diffusion systems exhibiting Turing's instability on bifurcation and pattern formation. Nonlinear Analysis, 2020, roč. 196, č. July. ISSN 0362-546X.en
dc.identifier.doi10.1016/j.na.2020.111815
dc.identifier.issn0362-546X
dc.identifier.obd43929045
dc.identifier.uri2-s2.0-85079851235
dc.identifier.urihttp://hdl.handle.net/11025/36745
dc.language.isoenen
dc.project.IDLO1506/PUNTIS - Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnostcs
dc.project.IDGA18-03253S/Diferenciální rovnice se speciálními typy nelinearitcs
dc.project.IDSGS-2019-010/Kvalitativní a kvantitativní studium matematických modelů IV.cs
dc.publisherElsevieren
dc.relation.ispartofseriesNonlinear Analysisen
dc.rights© Elsevieren
dc.rights.accessopenAccessen
dc.subject.translatedreaction-diffusion systemsen
dc.subject.translatedpattern formationen
dc.subject.translatedTuring's instabilityen
dc.subject.translatedunilateral integral termsen
dc.subject.translatednumerical experimentsen
dc.titleAn influence of unilateral sources and sinks in reaction-diffusion systems exhibiting Turing's instability on bifurcation and pattern formationen
dc.typečlánekcs
dc.typearticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files