Násobnost kritických bodů funkcionálů se sedlovou geometrií
Abstract
Studujeme násobnost kritických bodů spojitě diferencovatelných funkcionálů na reálných Banachových prostorech. Ukazujeme, že funckionál, který splňuje předpoklady Věty o sedlovém bodě a navíc je omezený zdola, má nejméně tři kritické body. V tomto případě zřejmě existuje globální minimizér a sedlový bod a my dokazujeme existenci třetího kritického bodu. Idea důkazu je založena na toku ve směru největšího spádu. Náš výsledek je příbuzný větě o třech kritických bodů H. Brezise a L. Nirenberga, která předpokládá tzv. "local linking". Nakonec náš výsledek aplikujeme na Dirichletovu úlohu pro semilineární stacionární parciální diferenciální rovnice. Analýza zahrnuje např. studium existence a násobnosti stacionárních řešení bistabilní (Allen-Cahnovy) rovnice a tzv. semipositonní problémy.
Description
Subject(s)
teorie kritických bodů, násobnost, sedlová geometrie, Věta o sedlovém bodě, omezenost zdola, stacionární parciální diferenciální rovnice
Citation
VOLEK, J. Multiple critical points of saddle geometry functionals. Nonlinear Analysis, 2018, roč. 170, č. May, s. 238-257. ISSN: 0362-546X