On digraphs of excess one

Date issued

2018

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Abstract

Digraf, ve kterém pro každou dvojici (ne nutně různých) vrcholů u, v existuje nejvýše jeden sled délky nejvýše k z u do v se nazývá k-geodetický digraf. Počet vrcholů N(d,k) k-geodetického digrafu s minimálním výstupním stupněm d je větší nebo roven Mooreově mezi M(d,k) a rovnost zde nastává, právě když digraf je silně geodetický, tj. jeho průměr je roven k. Silně geodetické digrafy tedy existují pro d=1 nebo k=1. Pro d, k větší než 1 tedy chceme určit, zda existují k-geodetické digrafy s minimálním výstupním stupněm d a počtem vrcholů N(d,k)=M(d,k)+1. Takový digraf nazýváme (d,k,1)-digraf a říkáme, že má exces 1. V článku dokazujeme, že (d,k,1)-digrafy jsou vždy diregulární, a tedy (2,k,1)-digrafy neexistují. Dále studujeme faktorizaci v Q[x] charakteristického polynomu (d,k,1)-digrafu, z níž dokazujeme neexistenci takových digrafů pro k=2 když d je větší než 7, a pro k=3,4 když d je větší než 1.

Description

Subject(s)

k-geodetický digraf, Mooreova mez, digraf s excesem 1, diregularita, characteristický polynom

Citation

MILLEROVÁ, M., MIRET, J. M., SILLASEN, A. A. On digraphs of excess one. Discrete applied mathematics, 2018, roč. 238, č. MAR 31 2018, s. 161-166. ISSN 0166-218X.