Comparison of Confidence Sets Designs for Various Degrees of Knowledge

dc.contributor.authorAjgl, Jiří
dc.contributor.authorStraka, Ondřej
dc.date.accessioned2022-03-14T11:00:23Z
dc.date.available2022-03-14T11:00:23Z
dc.date.issued2021
dc.description.abstract-translatedConfidence sets are random sets constructed in such a way that the probability that they contain the estimated parameter achieves a chosen level. This paper deals with combining information from two estimates and discusses several designs with respect to various degrees of knowledge of the joint probability density function. Namely, the designs by fusion, intersection and union are considered for unknown joint density, known Gaussian joint density and Gaussian joint density with unknown cross-covariance. Evaluation criteria are proposed and the confidence sets are compared using simple numerical example.en
dc.format7 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationAJGL, J. STRAKA, O. Comparison of Confidence Sets Designs for Various Degrees of Knowledge. In Proceedings of the 2021 24th International Conference on Information Fusion (FUSION). Sun City: IEEE, 2021. s. 1-7. ISBN: 978-1-73774-971-4 , ISSN: neuvedenocs
dc.identifier.isbn978-1-73774-971-4
dc.identifier.obd43933470
dc.identifier.uri2-s2.0-85123410634
dc.identifier.urihttp://hdl.handle.net/11025/47135
dc.language.isoenen
dc.project.IDSGS-2019-020/Rozvoj a využití kybernetických systémů identifikace, diagnostiky a řízení 4cs
dc.project.IDGC20-06054J/Inteligentní distribuované architektury pro odhad stavucs
dc.publisherIEEEen
dc.relation.ispartofseriesProceedings of the 2021 24th International Conference on Information Fusion (FUSION)en
dc.rightsPlný text je přístupný v rámci univerzity přihlášeným uživatelům.cs
dc.rights© ISIFen
dc.rights.accessrestrictedAccessen
dc.subject.translatedconfidence setsen
dc.subject.translatedestimation fusionen
dc.subject.translatedunknown dependenceen
dc.titleComparison of Confidence Sets Designs for Various Degrees of Knowledgeen
dc.typekonferenční příspěvekcs
dc.typeConferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
article_FUSION2021_AjSt.pdf
Size:
313.31 KB
Format:
Adobe Portable Document Format