A variational approach to bifurcation points of a reaction-diffusion system with obstacles and neumann boundary conditions

dc.contributor.authorEisner, Jan
dc.contributor.authorKučera, Milan
dc.contributor.authorVäth, Martin
dc.date.accessioned2017-03-02T09:52:00Z
dc.date.available2017-03-02T09:52:00Z
dc.date.issued2016
dc.description.abstract-translatedGiven a reaction-diffusion system which exhibits Turing's diffusion-driven instability, the influence of unilateral obstacles of opposite sign (source and sink) on bifurcation and critical points is studied. In particular, in some cases it is shown that spatially nonhomogeneous stationary solutions (spatial patterns) bifurcate from a basic spatially homogeneous steady state for an arbitrarily small ratio of diffusions of inhibitor and activator, while a sufficiently large ratio is necessary in the classical case without unilateral obstacles. The study is based on a variational approach to a non-variational problem which even after transformation to a variational one has an unusual structure for which usual variational methods do not apply.en
dc.format25 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationApplications of Mathematics, 2016, roč. 61, č. 1, s. 1-25. ISSN 0862-7940.en
dc.identifier.doi10.1007/s10492-016-0119-9
dc.identifier.issn0862-7940
dc.identifier.obd43916128
dc.identifier.urihttp://hdl.handle.net/11025/25672
dc.identifier.urihttps://www.scopus.com/record/display.uri?origin=resultslist&eid=2-s2.0-84957589965
dc.language.isoenen
dc.project.IDGA13-00863S/Semilineární a kvazilineární diferenciální rovnice: existence a násobnost řešenícs
dc.publisherAkademie věd České republikycs
dc.publisherTechnical University of Liberecen
dc.rights© Akademie věd České republikycs
dc.rightsPlný text je přístupný v rámci univerzity přihlášeným uživatelům.cs
dc.rights.accessrestrictedAccessen
dc.subjectreakčně-difúzní systémcs
dc.subjectjednostranný stavcs
dc.subjectvariační nerovnostcs
dc.subjectmístní rozdvojenícs
dc.subjectvariační přístupcs
dc.subjectprostorové vzorycs
dc.subjectTuringova nestabilitacs
dc.subject.translatedreaction-diffusion systemen
dc.subject.translatedunilateral conditionen
dc.subject.translatedvariational inequalityen
dc.subject.translatedlocal bifurcationen
dc.subject.translatedvariational approachen
dc.subject.translatedspatial patternsen
dc.subject.translatedTuring instabilityen
dc.titleA variational approach to bifurcation points of a reaction-diffusion system with obstacles and neumann boundary conditionsen
dc.typečlánekcs
dc.typearticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
Kucera.pdf
Size:
248.07 KB
Format:
Adobe Portable Document Format