Semantic Segmentation in the Task of Long-Term Visual Localization

dc.contributor.authorBureš, Lukáš
dc.contributor.authorMüller, Luděk
dc.date.accessioned2022-03-28T10:00:28Z
dc.date.available2022-03-28T10:00:28Z
dc.date.issued2021
dc.description.abstract-translatedIn this paper, it is discussed the problem of long-term visual localization with a using of the Aachen Day-Night dataset. Our experiments confirmed that carefully fine-tuning parameters of the Hierarchical Localization method can lead to enhance the visual localization accuracy. Next, our experiments show that it is possible to find an image’s area that does not add any valuable information in long-term visual localization and can be removed without losing the localization accuracy. The approach of using the method of semantic segmentation for preprocessing helped to achieve comparable state-of-the-art results in the Aachen Day-Night dataset.en
dc.format13 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationBUREŠ, L. MÜLLER, L. Semantic Segmentation in the Task of Long-Term Visual Localization. In 6th International Conference, ICR 2021, St. Petersburg, Russia, September 27–30, 2021, Proceedings. Cham: Springer, 2021. s. 27-39. ISBN: 978-3-030-87724-8 , ISSN: 0302-9743cs
dc.identifier.document-number711832900003
dc.identifier.doi10.1007/978-3-030-87725-5_3
dc.identifier.isbn978-3-030-87724-8
dc.identifier.issn0302-9743
dc.identifier.obd43933460
dc.identifier.uri2-s2.0-85116430820
dc.identifier.urihttp://hdl.handle.net/11025/47257
dc.language.isoenen
dc.project.IDLO1506/PUNTIS - Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnostcs
dc.publisherSpringeren
dc.relation.ispartofseries6th International Conference, ICR 2021, St. Petersburg, Russia, September 27–30, 2021, Proceedingsen
dc.rightsPlný text je přístupný v rámci univerzity přihlášeným uživatelům.cs
dc.rights© Springeren
dc.rights.accessrestrictedAccessen
dc.subject.translatedLong-term visual localizationen
dc.subject.translatedSemantic segmentationen
dc.subject.translatedSuperPointen
dc.subject.translatedSuperGlueen
dc.subject.translatedHRNet-OCRen
dc.titleSemantic Segmentation in the Task of Long-Term Visual Localizationen
dc.typekonferenční příspěvekcs
dc.typeConferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
Bureš-Müller2021_Chapter_SemanticSegmentationInTheTaskO.pdf
Size:
1.54 MB
Format:
Adobe Portable Document Format