Learning and Exploiting Partial Knowledge in Distributed Estimation

dc.contributor.authorRadtke, Sussane
dc.contributor.authorAjgl, Jiří
dc.contributor.authorStraka, Ondřej
dc.contributor.authorHanebeck, Uwe D.
dc.date.accessioned2022-03-28T10:00:28Z
dc.date.available2022-03-28T10:00:28Z
dc.date.issued2021
dc.description.abstract-translatedIn distributed estimation, several sensor nodes provide estimates of the same underlying dynamic process. These estimates are correlated but due to local processing, the correlations are only partially known or even unknown. For a consistent fusion of the local estimates, the correlation needs to be properly treated. Many methods provide consistent but overly conservative fusion results. In this paper, we propose to learn partial knowledge about the correlation in the form of correlation sets and exploit this knowledge to provide less conservative estimates. We use a simple numerical example to demonstrate the advantages of the proposed approach in terms of quality and consistency and how the quality of the fused estimate increases with time.en
dc.format7 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationRADTKE, S. AJGL, J. STRAKA, O. HANEBECK, UD. Learning and Exploiting Partial Knowledge in Distributed Estimation. In Proceedins of the 2021 IEEE International Conference on Multisensor Fusion and Integration (MFI 2021). Karlsruhe: IEEE, 2021. s. 1-7. ISBN: 978-1-66544-521-4 , ISSN: neuvedenocs
dc.identifier.doi10.1109/MFI52462.2021.9591197
dc.identifier.isbn978-1-66544-521-4
dc.identifier.issnneuvedeno
dc.identifier.obd43933471
dc.identifier.uri2-s2.0-85122868684
dc.identifier.urihttp://hdl.handle.net/11025/47260
dc.language.isoenen
dc.project.IDGC20-06054J/Inteligentní distribuované architektury pro odhad stavucs
dc.project.IDSGS-2019-020/Rozvoj a využití kybernetických systémů identifikace, diagnostiky a řízení 4cs
dc.publisherIEEEen
dc.relation.ispartofseriesProceedins of the 2021 IEEE International Conference on Multisensor Fusion and Integration (MFI 2021)en
dc.rightsPlný text je přístupný v rámci univerzity přihlášeným uživatelům.cs
dc.rights© IEEEen
dc.rights.accessrestrictedAccessen
dc.subject.translatedestimation fusionen
dc.subject.translatedpartially known correlationen
dc.subject.translatedlearning of correlationen
dc.titleLearning and Exploiting Partial Knowledge in Distributed Estimationen
dc.typekonferenční příspěvekcs
dc.typeConferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
Learning_and_Exploiting_Partial_Knowledge_in_Distributed_Estimation.pdf
Size:
814.03 KB
Format:
Adobe Portable Document Format