Reedova hypotéza pro vrcholové barvení grafů

Date issued

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Západočeská univerzita v Plzni

Abstract

V této práci se seznámíme s vrcholovým barvením grafů. Následně představíme Reedovu hypotézu (B. Reed. omega, Delta, and chi), která dává horní odhad na chromatické číslo grafu G jako chi(G) <= ceil((omega(G) + Delta(G)+1)/2). Následně shrneme doposud známé výsledky z oblasti Reedovy hypotézy a zaměříme se na výsledky které, uveřejnili Aravind a kol. v článku Bounding chi in terms of omega and Delta for some classes of graphs, kde mimo jiné ukázali, že třída {Chair, House, Bull, K_1+C_4}-free grafů a třída {Chair, House, Bull, Dart}-free grafů splňuje Reedovu hypotézu. Ve snaze o oslabení požadavku na počet zakázaných podgrafů v rámci vlastních výsledků uvedeme třídu grafů, která splňuje Reedovu hypotézu a rozšiřuje výše zmíněné výsledky.

Description

Subject(s)

vrcholové barvení, reedova hypotéza, chromatické číslo, klikovost, maximální stupeň, zakázané podgrafy

Citation

OPEN License Selector