Copula-based convolution for fast point-mass prediction

dc.contributor.authorDuník, Jindřich
dc.contributor.authorStraka, Ondřej
dc.contributor.authorMatoušek, Jakub
dc.contributor.authorBlasch, Erik
dc.date.accessioned2022-02-28T11:00:22Z
dc.date.available2022-02-28T11:00:22Z
dc.date.issued2022
dc.description.abstract-translatedThis paper deals with the state estimation of the nonlinear stochastic dynamic discrete-in-time models by a numerical solution to the Bayesian recursive relations represented by the point-mass filter (PMF). In particular, emphasis is placed on the development of the fast convolution, which reduces computational complexity of the PMF prediction step by the orders of magnitude for models with a diagonal form of the dynamic equation. The copula-based convolution decomposes the joint conditional density into the marginal densities (allowing efficient prediction) and an easy-to-calculate copula density function. As a consequence, it has the linear growth of its computational complexity with the state dimension, which is in a contrast with the exponential growth of the standard convolution complexity in PMF methods. The proposed fast convolution is analysed and illustrated in a numerical study for a static example and a dynamic terrain-aided navigation scenario. An exemplary implementation of the proposed convolution is provided along with the paper.en
dc.format10 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationDUNÍK, J. STRAKA, O. MATOUŠEK, J. BLASCH, E. Copula-based convolution for fast point-mass prediction. Signal Processing, 2022, roč. 192, č. March 2022, s. 1-10. ISSN: 0165-1684cs
dc.identifier.document-number731957400002
dc.identifier.doi10.1016/j.sigpro.2021.108367
dc.identifier.issn0165-1684
dc.identifier.obd43933833
dc.identifier.uri2-s2.0-85118532393
dc.identifier.urihttp://hdl.handle.net/11025/47015
dc.language.isoenen
dc.project.IDGC20-06054J/Inteligentní distribuované architektury pro odhad stavucs
dc.project.IDSGS-2019-020/Rozvoj a využití kybernetických systémů identifikace, diagnostiky a řízení 4cs
dc.publisherElsevieren
dc.relation.ispartofseriesSignal Processingen
dc.rightsPlný text je přístupný v rámci univerzity přihlášeným uživatelům.cs
dc.rights© Elsevieren
dc.rights.accessrestrictedAccessen
dc.subject.translatedstate estimation, nonlinear systems, Bayesian relations, convolution, point-mass filter, copulaen
dc.titleCopula-based convolution for fast point-mass predictionen
dc.typečlánekcs
dc.typearticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files