Optimal heat induction treatment of titanium alloys

dc.contributor.authorSmolyanov, Ivan Alexandrovich
dc.contributor.authorKotlan, Václav
dc.contributor.authorDoležel, Ivo
dc.date.accessioned2020-09-07T10:00:15Z
dc.date.available2020-09-07T10:00:15Z
dc.date.issued2020
dc.description.abstract-translatedPurpose – This paper aims to propose a number of approaches to reduce the temperature gradient of titanium billets in the heat treatment process. Design/methodology/approach – Modeling physical processes in the induction unit is calculated by the finite element method. Required power was calculated based on the fact that all the induced power is allocated in a certain layer and there are loss flows and heating flows. Also, an opportunity is offered to reduce temperature difference using numerical optimization, control system based on proportional-integral regulator and ballast blank. Findings – The asymmetry of the magnetic field at the ends of the inductor significantly affects the temperature uniformity along the length of the workpiece. Increasing the length of the workpiece by adding ballast blanks reduces the temperature drop. Also, increasing the non-magnetic gap in some cases it is possible to improve the quality of through heating. Research limitations/implications – The results of this study are verified only for a number of titanium alloys. Therefore, this knowledge is appropriate to apply for this type of materials. In future studies, it is possible to expand the possibilities of the considered approaches for other types of materials. Practical implications – Part of the study will be used to industrial plant for purpose of heat treatment of titanium alloys workpiece. Especially, control systemwill be basically made based on the model. Originality/value – A novel methodology of induction heating of titanium alloy Ti6Al4V in the form of cylindrical billets is presented that simplifies the process and improves temperature uniformity along the radius and length of the billet by optimizing the shape of the inductor and selecting suitable power modes.en
dc.format13 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationSMOLYANOV, IA., KOTLAN, V., DOLEŽEL, I. Optimal heat induction treatment of titanium alloys. Compel-the International Journal for computation and mathematics in electrical and electronic engineering, 2020, roč. 39, č. 1, s. 53-65. ISSN 0332-1649.en
dc.identifier.document-number507661800001
dc.identifier.doi10.1108/COMPEL-05-2019-0212
dc.identifier.issn0332-1649
dc.identifier.obd43929725
dc.identifier.uri2-s2.0-85078229204
dc.identifier.urihttp://hdl.handle.net/11025/39616
dc.language.isoenen
dc.project.IDLO1607/RICE-NETESIS - nové technologie a koncepce pro inteligentní průmyslové systémy (NETESIS)cs
dc.project.IDSGS-2018-043/Rozvoj technik robustního návrhu v elektrotechnických aplikacíchcs
dc.publisherEmeralden
dc.relation.ispartofseriesCompel-the International Journal For Computation And Mathematics In Electrical And Electronic Engineeringen
dc.rightsPlný text je přístupný v rámci univerzity přihlášeným uživatelům.cs
dc.rights© Emeralden
dc.rights.accessrestrictedAccessen
dc.subject.translatedcontrol systemsen
dc.subject.translatedinduction heatingen
dc.subject.translatedoptimal controlen
dc.subject.translatedthermal analysisen
dc.subject.translatedfinite element methoden
dc.titleOptimal heat induction treatment of titanium alloysen
dc.typečlánekcs
dc.typearticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files