Postupné vlny v nelineárních úlohách

dc.contributor.advisorHolubová Gabriela, Doc. Ing. Ph.D.
dc.contributor.authorLevá, Hana
dc.contributor.refereeDrábek Pavel, Prof. RNDr. DrSc.
dc.date.accepted2020-7-20
dc.date.accessioned2024-03-25T11:46:24Z
dc.date.available2019-10-1
dc.date.available2024-03-25T11:46:24Z
dc.date.issued2020
dc.date.submitted2020-6-18
dc.description.abstractTato diplomová práce se zaměřuje na studium úloh pro parciální diferenciální rovnice s řešeními ve tvaru postupné vlny. Nejprve vysvětlíme pojmy postupná vlna a soliton. Poté popíšeme úlohy, v nichž se vyskytují. Dále se podrobněji zabýváme modelem visutého mostu s netypickou nelinearitou $f(u) = \alpha u^{+}-\beta u^{-}-1$. Pro tuto úlohu dokazujeme pomocí věty Mountain Pass Theorem existenci řešení ve tvaru postupné vlny. Omezíme možné hodnoty parametrů popisujících řešení, stejně tak velikost rychlosti šíření vlny. Na závěr provedeme numerické experimenty ve snaze najít konkrétní předpis pro řešení ve tvaru postupné vlny.cs
dc.description.abstract-translatedThis master thesis is focused on study of problems for travelling waves in partial differential equations. At first, we explain the notions of travelling wave and soliton. After that, we describe problems containing these notions. Next, we deal with suspension bridge model with atypical nonlinearity $f(u) = \alpha u^{+}-\beta u^{-}-1$. For this problem we prove the existence of travelling wave solution due to the Mountain Pass Theorem. We restrict possible values of parameters that describe the solution as well as the magnitude of the velocity of travelling wave. In the end, we perform numerical experiments in order to find specific form of travelling wave solution.en
dc.description.resultObhájeno
dc.formatix s., 55 s.
dc.identifier82930
dc.identifier.urihttp://hdl.handle.net/11025/55390
dc.language.isocs
dc.publisherZápadočeská univerzita v Plzni
dc.rightsPlný text práce je přístupný bez omezení
dc.subjectnelineární parciální diferenciální rovnicecs
dc.subjectpostupná vlnacs
dc.subjectsolitoncs
dc.subjectmodel visutého mostucs
dc.subjectmountain pass theoremcs
dc.subject.translatednonlinear partial differential equationsen
dc.subject.translatedtravelling waveen
dc.subject.translatedsolitonen
dc.subject.translatedsuspension bridge modelen
dc.subject.translatedmountain pass theoremen
dc.thesis.degree-grantorZápadočeská univerzita v Plzni. Fakulta aplikovaných věd
dc.thesis.degree-levelNavazující
dc.thesis.degree-nameMgr.
dc.thesis.degree-programMatematika
dc.titlePostupné vlny v nelineárních úloháchcs
dc.title.alternativeTravelling Waves in Nonlinear Problemsen
dc.typediplomová práce
local.relation.IShttps://portal.zcu.cz/StagPortletsJSR168/CleanUrl?urlid=prohlizeni-prace-detail&praceIdno=82930

Files

Original bundle
Showing 1 - 4 out of 4 results
No Thumbnail Available
Name:
DP_Leva.pdf
Size:
2.23 MB
Format:
Adobe Portable Document Format
Description:
Plný text práce
No Thumbnail Available
Name:
PO_Leva.pdf
Size:
830 KB
Format:
Adobe Portable Document Format
Description:
Posudek oponenta práce
No Thumbnail Available
Name:
PV_Leva.pdf
Size:
390.35 KB
Format:
Adobe Portable Document Format
Description:
Posudek vedoucího práce
No Thumbnail Available
Name:
P_Leva.pdf
Size:
174.9 KB
Format:
Adobe Portable Document Format
Description:
Průběh obhajoby práce

Collections