Suspension bridges with non-constant stiffness: bifurcation of periodic solutions

dc.contributor.authorHolubová, Gabriela
dc.contributor.authorJanoušek, Jakub
dc.date.accessioned2021-02-01T11:00:11Z
dc.date.available2021-02-01T11:00:11Z
dc.date.issued2020
dc.description.abstract-translatedWe consider a modified version of a suspension bridge model with a spatially variable stiffness parameter to reflect the discrete nature of the placement of the bridge hangers. We study the qualitative and quantitative properties of this model and compare the cases of constant and non-constant coefficients. In particular, we show that for certain values of the stiffness parameter, the bifurcation occurs. Moreover, we can expect also the appearance of blowups, whose existence is closely connected with the so-called Fučík spectrum of the corresponding linear operator.en
dc.format11 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationHOLUBOVÁ, G., JANOUŠEK, J. Suspension bridges with non-constant stiffness: bifurcation of periodic solutions. Zietschrift für angewandte Mathamtik und Physik, 2020, roč. 71, č. 6. ISSN 0044-2275.cs
dc.identifier.document-number578056900001
dc.identifier.doi10.1007/s00033-020-01415-4
dc.identifier.issn0044-2275
dc.identifier.obd43930450
dc.identifier.uri2-s2.0-85092634377
dc.identifier.urihttp://hdl.handle.net/11025/42583
dc.language.isoenen
dc.project.IDGA18-03253S/Diferenciální rovnice se speciálními typy nelinearitcs
dc.project.IDLO1506/PUNTIS - Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnostcs
dc.publisherBirkhauserde
dc.relation.ispartofseriesZeitschrift Fur Angewandte Mathematik Und Physikde
dc.rightsPlný text není přístupný.cs
dc.rights© Birkhausde
dc.rights.accessclosedAccessen
dc.subject.translatedsuspension bridgeen
dc.subject.translatedjumping nonlinearityen
dc.subject.translatedvariable coefficienten
dc.subject.translatedbifurcationen
dc.titleSuspension bridges with non-constant stiffness: bifurcation of periodic solutionsen
dc.typečlánekcs
dc.typearticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files