On Comparison of XGBoost and Convolutional Neural Networks for Glottal Closure Instant Detection

dc.contributor.authorVraštil, Michal
dc.contributor.authorMatoušek, Jindřich
dc.date.accessioned2022-03-28T10:00:27Z
dc.date.available2022-03-28T10:00:27Z
dc.date.issued2021
dc.description.abstract-translatedIn this paper, we progress further in the development of an automatic GCI detection model. In previous papers, we compared XGBoost with other supervised learning models just as with a deep one-dimensional convolutional neural network. Here we aimed to compare a deep one-dimensional convolutional neural network, more precisely the InceptionV3 model, with XGBoost and context-aware XGBoost models trained on the same size datasets. Afterward, we wanted to reveal the influence of dataset consistency and size on the XGBoost performance. All newly created models are compared while tested on our custom test dataset. On the publicly available databases, the XGBoost and context-aware XGBoost with the context of length 7 shows similar and better performance than the InceptionV3 model. Also, the consistency of the training dataset shows significant performance improvement in comparison to the older models.en
dc.format9 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationVRAŠTIL, M. MATOUŠEK, J. On Comparison of XGBoost and Convolutional Neural Networks for Glottal Closure Instant Detection. In Text, Speech, and Dialogue 24th International Conference, TSD 2021, Olomouc, Czech Republic, September 6–9, 2021, Proceedings. Cham: Springer International Publishing, 2021. s. 448-456. ISBN: 978-3-030-83526-2 , ISSN: 0302-9743cs
dc.identifier.doi10.1007/978-3-030-83527-9_38
dc.identifier.isbn978-3-030-83526-2
dc.identifier.issn0302-9743
dc.identifier.obd43933409
dc.identifier.uri2-s2.0-85115205309
dc.identifier.urihttp://hdl.handle.net/11025/47245
dc.language.isoenen
dc.project.IDGA19-19324S/Plně trénovatelná syntéza české řeči z textu s využitím hlubokých neuronových sítícs
dc.project.IDSGS-2019-027/Inteligentní metody strojového vnímání a porozumění 4cs
dc.project.ID90140/Velká výzkumná infrastruktura_(J) - e-INFRA CZcs
dc.publisherSpringer International Publishingen
dc.relation.ispartofseriesText, Speech, and Dialogue 24th International Conference, TSD 2021, Olomouc, Czech Republic, September 6–9, 2021, Proceedingsen
dc.rightsPlný text je přístupný v rámci univerzity přihlášeným uživatelům.cs
dc.rights© Springeren
dc.rights.accessrestrictedAccessen
dc.subject.translatedGlottal closure instant (GCI)en
dc.subject.translatedPitch marken
dc.subject.translatedDetectionen
dc.subject.translatedClassificationen
dc.subject.translatedExtreme gradient boostingen
dc.subject.translatedConvolutional neural networken
dc.titleOn Comparison of XGBoost and Convolutional Neural Networks for Glottal Closure Instant Detectionen
dc.typekonferenční příspěvekcs
dc.typeConferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
Vrastil_On_Comparison_of_XGBoost_TSD2021.pdf
Size:
9.68 MB
Format:
Adobe Portable Document Format