On Minimization of Nonlinear Energies Using FEM in MATLAB

dc.contributor.authorMoskovka, Alexej
dc.contributor.authorValdman, Jan
dc.contributor.authorVohnoutová, Marta
dc.date.accessioned2024-01-15T11:00:16Z
dc.date.available2024-01-15T11:00:16Z
dc.date.issued2023
dc.description.abstract-translatedTwo minimization problems are added to the Moskovka and Valdman MATLAB package (2022): a Ginzburg-Landau (scalar) problem and a topology optimization (both scalar and vector) problem in linear elasticity. Both problems are described as nonlinear energy minimizations that contain the first gradient of the unknown field. Their energy functionals are discretized by finite elements, and the corresponding minima are searched using the trust-region method with a known Hessian sparsity or the Quasi-Newton method.en
dc.format
dc.format12 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationMOSKOVKA, A.; VALDMAN, J.; VOHNOUTOVÁ, M. On Minimization of Nonlinear Energies Using FEM in MATLAB. In: Parallel Processing and Applied Mathematics. Cham: Springer, 2023, s. 331-342. ISBN 978-3-031-30444-6, ISSN 0302-9743.cs
dc.identifier.doi10.1007/978-3-031-30445-3_28
dc.identifier.isbn978-3-031-30444-6
dc.identifier.issn0302-9743
dc.identifier.obd43939559
dc.identifier.uri2-s2.0-85161449568
dc.identifier.urihttp://hdl.handle.net/11025/55074
dc.language.iso
dc.language.isoenen
dc.project.IDSGS-2022-006/Kvalitativní a kvantitativní studium matematických modelů V.cs
dc.publisherSpringeren
dc.relation.ispartofseriesParallel Processing and Applied Mathematicsen
dc.rightsPlný text je přístupný v rámci univerzity přihlášeným uživatelůmcs
dc.rights© The Author(s)en
dc.rights.accessrestrictedAccessen
dc.subject.translatedminimizationen
dc.subject.translatednonlinear energyen
dc.subject.translatedfinite elementsen
dc.subject.translatedGinzburg-Landau modelen
dc.subject.translatedtopology optimizationen
dc.titleOn Minimization of Nonlinear Energies Using FEM in MATLABen
dc.typekonferenční příspěvekcs
dc.typeConferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files