Spiraling solutions of nonlinear Schrodinger equations

Date issued

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Cambridge University Press

Abstract

Studujeme novou rodinu řešení se změnou znaménka stacionární nelineární Schrödingerovy rovnice -Δv + qv = |v|^(p-2) v, v R3, s 2 < p < ∞ a q > 0 nebo q=0. Tato řešení jsou spirálovitá v tom smyslu, že nejsou osově symetrická, ale invariantní při šroubovém pohybu, tj. mají společné symetrické vlastnosti helikoidu. Kromě výsledků existence uvádíme informace o tvaru spirálovitých řešení, který závisí na hodnotě parametru reprezentujícího rotační sklon základního šroubového pohybu. Naše výsledky doplňují příbuznou analýzu Del Pina, Mussa a Pacarda v jejich studii (2012, Manuscripta Math., 138, 273-286) pro Allenovu-Cahnovu rovnici, přičemž charaktervýsledků a základní variační struktura jsou zcela odlišné.

Description

Subject(s)

eliptické rovnice, řešení se změnou znaménka, invariance šroubového pohybu, asymptoická analýza, variační metody

Citation

AGUDELO RICO, OI. WETH, T. KUEBLER, J. Spiraling solutions of nonlinear Schrodinger equations. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2022, roč. 152, č. 3, s. 592-625. ISSN: 0308-2105