Importance Gauss-Hermite Gaussian Filter for Models with Non-Additive Non-Gaussian Noises

dc.contributor.authorStraka, Ondřej
dc.contributor.authorDuník, Jindřich
dc.contributor.authorElvira, Victor
dc.date.accessioned2022-03-14T11:00:23Z
dc.date.available2022-03-14T11:00:23Z
dc.date.issued2021
dc.description.abstract-translatedThe paper deals with the state estimation of nonlinear stochastic systems with non-additive non-Gaussian noises. A new algorithm is proposed based on the computationally efficient Gaussian filter. The non-additivity and non-Gaussianity of the noises prevents the usage of standard quadratures to evaluate the moment integrals present in the Gaussian filter as these are not Gauss-weighted. The proposed algorithm leverages the importance Gauss-Hermite method to evaluate the integrals by means of the Gaussian proposal PDF. In order to improve the evaluation quality, an iterative improvement of the proposal PDF is employed. The paper also discusses the algorithm for special cases of the model with either process or measurement noise being additive yet non-Gaussian. The performance of the proposed algorithm is illustrated using a numerical example.en
dc.format7 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationSTRAKA, O. DUNÍK, J. ELVIRA, V. Importance Gauss-Hermite Gaussian Filter for Models with Non-Additive Non-Gaussian Noises. In Proceedings of the 2021 IEEE 24th International Conference on Information Fusion (FUSION). Sun City: IEEE, 2021. s. 1-7. ISBN: 978-1-73774-971-4 , ISSN: neuvedenocs
dc.identifier.isbn978-1-73774-971-4
dc.identifier.obd43933473
dc.identifier.uri2-s2.0-85123437441
dc.identifier.urihttp://hdl.handle.net/11025/47137
dc.language.isoenen
dc.project.IDSGS-2019-020/Rozvoj a využití kybernetických systémů identifikace, diagnostiky a řízení 4cs
dc.project.IDGC20-06054J/Inteligentní distribuované architektury pro odhad stavucs
dc.publisherIEEEen
dc.relation.ispartofseriesProceedings of the 2021 IEEE 24th International Conference on Information Fusion (FUSION)en
dc.rightsPlný text je přístupný v rámci univerzity přihlášeným uživatelům.cs
dc.rights© ISIFen
dc.rights.accessrestrictedAccessen
dc.subject.translatedNonlinear filteringen
dc.subject.translatednon-additive noisesen
dc.subject.translatednon-Gaussian noisesen
dc.subject.translatedGaussian filteren
dc.subject.translatedimportance samplingen
dc.subject.translatedGauss-Hermite rule.en
dc.titleImportance Gauss-Hermite Gaussian Filter for Models with Non-Additive Non-Gaussian Noisesen
dc.typekonferenční příspěvekcs
dc.typeConferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files