Automatic Coral Detection using Neural Networks

dc.contributor.authorGruber, Ivan
dc.contributor.authorStraka, Jakub
dc.date.accessioned2022-03-28T10:00:25Z
dc.date.available2022-03-28T10:00:25Z
dc.date.issued2020
dc.description.abstract-translatedThis paper presents methods that were utilized in the ImageCLEFcoral 2020 challenge. The challenge contains two following subtasks: automatic coral reef annotation and localization, and automatic coral reef image pixel-wise parsing. In the first subtask, we tested two methods - SSD, and Mask R-CNN. In the second subtask, we tested only Mask R-CNN. Performance improvements were achieved by careful cleaning of the dataset and by both offline and online data augmentations.en
dc.format7 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationGRUBER, I. STRAKA, J. Automatic Coral Detection using Neural Networks. In CLEF 2020 Working Notes. Thessaloniki: CEUR Workshop Proceedings, 2020. s. nestránkováno. ISBN: neuvedeno , ISSN: 1613-0073cs
dc.identifier.isbnneuvedeno
dc.identifier.issn1613-0073
dc.identifier.obd43930671
dc.identifier.uri2-s2.0-85121773453
dc.identifier.urihttp://hdl.handle.net/11025/47232
dc.language.isoenen
dc.project.IDSGS-2019-027/Inteligentní metody strojového vnímání a porozumění 4cs
dc.publisherCEUR Workshop Proceedingsen
dc.relation.ispartofseriesCLEF 2020 Working Notesen
dc.rights© authorsen
dc.rights.accessopenAccessen
dc.subjectDetekce objektůcs
dc.subjectsémantická segmentacecs
dc.subjectlokalizace korálůcs
dc.subjectkonvoluční neuronové sítěcs
dc.subjectstrojové učenícs
dc.subject.translatedObject detectionen
dc.subject.translatedSemantic segmentationen
dc.subject.translatedCoral localizationen
dc.subject.translatedConvolutional neural networksen
dc.subject.translatedMachine learningen
dc.titleAutomatic Coral Detection using Neural Networksen
dc.title.alternativeAutomatická detekce korálů pomocí konvolučních neuronových sítícs
dc.typekonferenční příspěvekcs
dc.typeConferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
paper_63.pdf
Size:
7.18 MB
Format:
Adobe Portable Document Format