Planar graphs have two-coloring number at most 8
| dc.contributor.author | Dvořák, Zdeněk | |
| dc.contributor.author | Kabela, Adam | |
| dc.contributor.author | Kaiser, Tomáš | |
| dc.date.accessioned | 2018-09-21T10:00:12Z | |
| dc.date.available | 2018-09-21T10:00:12Z | |
| dc.date.issued | 2018 | |
| dc.description.abstract-translated | We prove that the two-coloring number of any planar graph is at most 8. This resolves a question of Kierstead et al. (2009). The result is optimal. | en |
| dc.format | 14 s. | cs |
| dc.format.mimetype | application/pdf | |
| dc.identifier.citation | DVOŘÁK, Z., KABELA, A., KAISER, T. Planar graphs have two-coloring number at most 8. Journal of combinatorial theory series B, 2018, roč. 130, č. MAY 2018, s. 144-157. ISSN 0095-8956 | en |
| dc.identifier.document-number | 428588800007 | |
| dc.identifier.doi | 10.1016/j.jctb.2017.12.003 | |
| dc.identifier.issn | 0095-8956 | |
| dc.identifier.obd | 43922061 | |
| dc.identifier.uri | http://hdl.handle.net/11025/29945 | |
| dc.language.iso | en | en |
| dc.project.ID | GA14-19503S/Barevnost a struktura grafů | cs |
| dc.project.ID | SGS-2013-022/Kvalitativní a kvantitativní studium matematických modelů II. | cs |
| dc.publisher | Elsevier | en |
| dc.relation.ispartofseries | Journal Of Combinatorial Theory Series B | en |
| dc.rights | © Elsevier | en |
| dc.rights.access | openAccess | en |
| dc.subject.translated | Planar graph | en |
| dc.subject.translated | Two-coloring number | en |
| dc.title | Planar graphs have two-coloring number at most 8 | en |
| dc.type | postprint | cs |
| dc.type | postprint | en |
| dc.type.status | Peer-reviewed | en |
| dc.type.version | acceptedVersion | en |
Files
Original bundle
1 - 1 out of 1 results