Trestles in the squares of graphs

dc.contributor.authorKabela, Adam
dc.contributor.authorTeska, Jakub
dc.date.accessioned2021-12-06T11:00:26Z
dc.date.available2021-12-06T11:00:26Z
dc.date.issued2021
dc.description.abstract-translatedWe show that the square of every connected S(K_{1,4})-free graph satisfying a matching condition has a 2-connected spanning subgraph of maximum degree at most 3. Furthermore, we characterise trees whose square has a 2-connected spanning subgraph of maximum degree at most k. This generalises the results on S(K_{1,3})-free graphs of Henry and Vogler (1985) and Harary and Schwenk (1971), respectively.en
dc.format10 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationKABELA, A. TESKA, J. Trestles in the squares of graphs. DISCRETE MATHEMATICS, 2021, roč. 344, č. 11, s. nestránkováno. ISSN: 0012-365Xcs
dc.identifier.document-number690796100014
dc.identifier.doi10.1016/j.disc.2021.112532
dc.identifier.issn0012-365X
dc.identifier.obd43933881
dc.identifier.uri2-s2.0-85113154134
dc.identifier.urihttp://hdl.handle.net/11025/46283
dc.language.isoenen
dc.project.IDGA20-09525S/Strukturální vlastnosti tříd grafů charakterizovaných zakázanými indukovanými podgrafycs
dc.publisherElsevieren
dc.relation.ispartofseriesDiscrete Mathematicsen
dc.rights.accessopenAccessen
dc.subject.translatedsquares of graphs, Hamiltonicity, trestles, forbidden subgraphsen
dc.titleTrestles in the squares of graphsen
dc.typepreprintcs
dc.typepreprinten
dc.type.versiondraften

Files

OPEN License Selector