Trestles in the squares of graphs

dc.contributor.authorKabela, Adam
dc.contributor.authorTeska, Jakub
dc.date.accessioned2021-12-06T11:00:26Z
dc.date.available2021-12-06T11:00:26Z
dc.date.issued2021
dc.description.abstract-translatedWe show that the square of every connected S(K_{1,4})-free graph satisfying a matching condition has a 2-connected spanning subgraph of maximum degree at most 3. Furthermore, we characterise trees whose square has a 2-connected spanning subgraph of maximum degree at most k. This generalises the results on S(K_{1,3})-free graphs of Henry and Vogler (1985) and Harary and Schwenk (1971), respectively.en
dc.format10 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationKABELA, A. TESKA, J. Trestles in the squares of graphs. DISCRETE MATHEMATICS, 2021, roč. 344, č. 11, s. nestránkováno. ISSN: 0012-365Xcs
dc.identifier.document-number690796100014
dc.identifier.doi10.1016/j.disc.2021.112532
dc.identifier.issn0012-365X
dc.identifier.obd43933881
dc.identifier.uri2-s2.0-85113154134
dc.identifier.urihttp://hdl.handle.net/11025/46283
dc.language.isoenen
dc.project.IDGA20-09525S/Strukturální vlastnosti tříd grafů charakterizovaných zakázanými indukovanými podgrafycs
dc.publisherElsevieren
dc.relation.ispartofseriesDiscrete Mathematicsen
dc.rights.accessopenAccessen
dc.subject.translatedsquares of graphs, Hamiltonicity, trestles, forbidden subgraphsen
dc.titleTrestles in the squares of graphsen
dc.typepreprintcs
dc.typepreprinten
dc.type.versiondraften

Files

Collections