Weak regularity and finitely forcible graph limits

dc.contributor.authorCooper, Jacob W.
dc.contributor.authorKaiser, Tomáš
dc.contributor.authorKrál', Daniel
dc.contributor.authorNoel, Jonathan A.
dc.date.accessioned2019-10-28T11:00:12Z
dc.date.available2019-10-28T11:00:12Z
dc.date.issued2018
dc.description.abstract-translatedGraphons are analytic objects representing limits of convergent sequences of graphs. Lovász and Szegedy conjectured that every finitely forcible graphon, i.e. any graphon determined by finitely many subgraph densities, has a simple structure. In particular, one of their conjectures would imply that every finitely forcible graphon has a weak ε-regular partition with the number of parts bounded by a polynomial in ε^{−1}. We construct a finitely forcible graphon W such that the number of parts in any weak ε-regular partition of W is at least exponential in ε^{−2}/2^{5 log* ε^{-2}}. This bound almost matches the known upper bound for graphs and, in a certain sense, is the best possible for graphons.en
dc.format32 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationCOOPER, J. W., KAISER, T., KRÁL', D., NOEL, J. A. Weak regularity and finitely forcible graph limits. Transactions of the American mathematical society, 2018, roč. 370, č. 6, s. 3833-3864. ISSN 0002-9947.en
dc.identifier.document-number428311400003
dc.identifier.doi10.1090/tran/7066
dc.identifier.issn0002-9947
dc.identifier.obd43927060
dc.identifier.uri2-s2.0-85044404667
dc.identifier.urihttp://hdl.handle.net/11025/35700
dc.language.isoenen
dc.project.IDGA14-19503S/Barevnost a struktura grafůcs
dc.publisherAmerican Mathematical Societyen
dc.relation.ispartofseriesTransactions Of The American Mathematical Societyen
dc.rightsPlný text není přístupný.cs
dc.rights© American Mathematical Societyen
dc.rights.accessclosedAccessen
dc.subject.translatedgraph limiten
dc.subject.translatedgraphonen
dc.subject.translatedweak regularityen
dc.subject.translatedforcibilityen
dc.titleWeak regularity and finitely forcible graph limitsen
dc.typečlánekcs
dc.typearticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files