Neural Criticality: Validation of Convolutional Neural Networks

dc.contributor.authorDiviš, Václav
dc.contributor.authorHrúz, Marek
dc.date.accessioned2022-03-14T11:00:24Z
dc.date.available2022-03-14T11:00:24Z
dc.date.issued2021
dc.description.abstract-translatedThe black-box behavior of Convolutional Neural Networks is one of the biggest obstacles to the development of a standardized validation process. Methods for analyzing and validating neural networks currently rely on approaches and metrics provided by the scientific community without considering functional safety requirements. However, automotive norms, such as ISO26262 and ISO/PAS21448, do require a comprehensive knowledge of the system and of the working environment in which the network will be deployed. In order to gain such a knowledge and mitigate the natural uncertainty of probabilistic models, we focused on investigating the influence of filter weights on the classification confidence in Single Point Of Failure fashion. We laid the theoretical foundation of a method called the Neurons’ Criticality Analysis. This method, as described in this article, helps evaluate the criticality of the tested network and choose related plausibility mechanism. Copyright © 2021, for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).en
dc.format9 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationDIVIŠ, V. HRÚZ, M. Neural Criticality: Validation of Convolutional Neural Networks. In CEUR Workshop Proceedings. Neuveden: CEUR-WS, 2021. s. nestránkováno. ISBN: neuvedeno , ISSN: 1613-0073cs
dc.identifier.isbnneuvedeno
dc.identifier.issn1613-0073
dc.identifier.obd43933811
dc.identifier.uri2-s2.0-85101278318
dc.identifier.urihttp://hdl.handle.net/11025/47141
dc.language.isoenen
dc.project.IDSGS-2019-027/Inteligentní metody strojového vnímání a porozumění 4cs
dc.publisherCEUR-WSen
dc.relation.ispartofseriesCEUR Workshop Proceedingsen
dc.rightsPlný text je přístupný v rámci univerzity přihlášeným uživatelům.cs
dc.rights© authorsen
dc.rights.accessrestrictedAccessen
dc.subject.translatedCriticalityen
dc.subject.translatedValidationen
dc.subject.translatedConvolutional Neural Networksen
dc.titleNeural Criticality: Validation of Convolutional Neural Networksen
dc.typekonferenční příspěvekcs
dc.typeConferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
Divis_Neural_Criticality_SafeAI_2021.pdf
Size:
485.57 KB
Format:
Adobe Portable Document Format