On a Hamiltonian elliptic system with concave and convex nonlinearities
| dc.contributor.author | Agudelo Rico, Oscar Iván | |
| dc.contributor.author | Ruf, Bernhard | |
| dc.contributor.author | Veléz, Carlos | |
| dc.date.accessioned | 2025-06-20T08:54:46Z | |
| dc.date.available | 2025-06-20T08:54:46Z | |
| dc.date.issued | 2023 | |
| dc.date.updated | 2025-06-20T08:54:46Z | |
| dc.description.abstract | In this work we study a Hamiltonian elliptic system of equations with Dirichlet boundary condition and with non-linearities that are concave near the origin and are convex and superlinear at infinity. The concavity of the non-linearities depends on non-negative parameters lambda and mu and we provide regions for the pairs (lambda, mu) guaranteeing existence and non-existence of nonnegative solutions. This work is inspired by the seminal work for the single equation done by Ambrosetti, Brezis and Cerami in 1994. | en |
| dc.description.abstract | V této práci studujeme hamiltonovský eliptický systém rovnic s Dirichletovou okrajovou podmínkou a s nelinearitami, které jsou v blízkosti počátku konkávní a v innosti konvexní a superlineární. Konkávnost nelinearit závisí na nezáporných parametrech lambda a mu a pro dvojice (lambda, mu) uvádíme oblasti zaručující existenci a neexistenci nezáporných řešení. Tato práce je inspirována zásadní prací pro jednoduchou rovnici, kterou v roce 1994 provedli Ambrosetti, Brezis a Cerami. | cz |
| dc.format | 17 | |
| dc.identifier.document-number | 000996152100001 | |
| dc.identifier.doi | 10.3934/dcdss.2023103 | |
| dc.identifier.issn | 1937-1632 | |
| dc.identifier.obd | 43943199 | |
| dc.identifier.orcid | Agudelo Rico, Oscar Iván 0000-0002-2588-9999 | |
| dc.identifier.orcid | Ruf, Bernhard 0000-0002-3481-4948 | |
| dc.identifier.uri | http://hdl.handle.net/11025/61517 | |
| dc.language.iso | en | |
| dc.project.ID | GA22-18261S | |
| dc.relation.ispartofseries | Discrete and Continuous Dynamical Systems - Series S | |
| dc.rights.access | A | |
| dc.subject | Hamiltonian elliptic system | en |
| dc.subject | concave-convex non-linearity | en |
| dc.subject | nonnegative solutions | en |
| dc.subject | monotone iterations | en |
| dc.subject | minimal solution | en |
| dc.subject | comparison principle | en |
| dc.subject | Hamiltonův eliptický systém | cz |
| dc.subject | konkávně-konvexní nelinearita | cz |
| dc.subject | nezáporná hodnota řešení | cz |
| dc.subject | monotónní iterace | cz |
| dc.subject | minimální řešení | cz |
| dc.subject | princip porovnávání | cz |
| dc.title | On a Hamiltonian elliptic system with concave and convex nonlinearities | en |
| dc.title | O hamiltonovském eliptickém systému s konkávními a konvexními nelinearitami | cz |
| dc.type | Článek v databázi Scopus (Jsc) | |
| dc.type | ČLÁNEK | |
| dc.type.status | Published Version | |
| local.files.count | 1 | * |
| local.files.size | 442006 | * |
| local.has.files | yes | * |
| local.identifier.eid | 2-s2.0-85179154869 |
Files
Original bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- 2023. Agudelo, Ruf, Velez (DCDS-S).pdf
- Size:
- 431.65 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: