Augmented physics-based machine learning for navigation and tracking

dc.contributor.authorImbiriba, Tales
dc.contributor.authorStraka, Ondřej
dc.contributor.authorDuník, Jindřich
dc.contributor.authorClosas, Pau
dc.date.accessioned2025-06-20T08:50:01Z
dc.date.available2025-06-20T08:50:01Z
dc.date.issued2024
dc.date.updated2025-06-20T08:50:01Z
dc.description.abstractThis article presents a survey of the use of AI/ML techniques in navigation and tracking applications, with a focus on the dynamical models typically involved in corresponding state estimation problems. When physics-based models are either not available or not able to capture the complexity of the actual dynamics, recent works explored the use of deep learning models. This article tradeoffs both models and presents promising solutions in between, whereby physics-based models are augmented by data-driven components. The article uses two target tracking examples, both with syntethic and real data, to illustrate the various choices of the models and their parameters, highlighting their benefits and challenges. Finally, the paper provides some conclusions and an outlook for future research in this relevant area.en
dc.format13
dc.identifier.document-number001246582400015
dc.identifier.doi10.1109/TAES.2023.3328853
dc.identifier.issn0018-9251
dc.identifier.obd43940685
dc.identifier.orcidImbiriba, Tales 0000-0002-2626-2039
dc.identifier.orcidStraka, Ondřej 0000-0003-3066-5882
dc.identifier.orcidDuník, Jindřich 0000-0003-1460-8845
dc.identifier.orcidClosas, Pau 0000-0002-5960-6600
dc.identifier.urihttp://hdl.handle.net/11025/61357
dc.language.isoen
dc.project.IDSGS-2022-022
dc.relation.ispartofseriesIEEE Transactions on Aerospace and Electronic Systems
dc.rights.accessC
dc.subjectmachine learningen
dc.subjectdata-drivenen
dc.subjectphysics-informeden
dc.subjectnavigation systemsen
dc.subjecttarget trackingen
dc.subjectstate estimationen
dc.subjectrobust estimationen
dc.titleAugmented physics-based machine learning for navigation and trackingen
dc.typeČlánek v databázi WoS (Jimp)
dc.typeČLÁNEK
dc.type.statusPublished Version
local.files.count1*
local.files.size1664414*
local.has.filesyes*
local.identifier.eid2-s2.0-85181839239

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
article_TAES23_ImStDuCl.pdf
Size:
1.59 MB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections