Augmented physics-based machine learning for navigation and tracking
| dc.contributor.author | Imbiriba, Tales | |
| dc.contributor.author | Straka, Ondřej | |
| dc.contributor.author | Duník, Jindřich | |
| dc.contributor.author | Closas, Pau | |
| dc.date.accessioned | 2025-06-20T08:50:01Z | |
| dc.date.available | 2025-06-20T08:50:01Z | |
| dc.date.issued | 2024 | |
| dc.date.updated | 2025-06-20T08:50:01Z | |
| dc.description.abstract | This article presents a survey of the use of AI/ML techniques in navigation and tracking applications, with a focus on the dynamical models typically involved in corresponding state estimation problems. When physics-based models are either not available or not able to capture the complexity of the actual dynamics, recent works explored the use of deep learning models. This article tradeoffs both models and presents promising solutions in between, whereby physics-based models are augmented by data-driven components. The article uses two target tracking examples, both with syntethic and real data, to illustrate the various choices of the models and their parameters, highlighting their benefits and challenges. Finally, the paper provides some conclusions and an outlook for future research in this relevant area. | en |
| dc.format | 13 | |
| dc.identifier.document-number | 001246582400015 | |
| dc.identifier.doi | 10.1109/TAES.2023.3328853 | |
| dc.identifier.issn | 0018-9251 | |
| dc.identifier.obd | 43940685 | |
| dc.identifier.orcid | Imbiriba, Tales 0000-0002-2626-2039 | |
| dc.identifier.orcid | Straka, Ondřej 0000-0003-3066-5882 | |
| dc.identifier.orcid | Duník, Jindřich 0000-0003-1460-8845 | |
| dc.identifier.orcid | Closas, Pau 0000-0002-5960-6600 | |
| dc.identifier.uri | http://hdl.handle.net/11025/61357 | |
| dc.language.iso | en | |
| dc.project.ID | SGS-2022-022 | |
| dc.relation.ispartofseries | IEEE Transactions on Aerospace and Electronic Systems | |
| dc.rights.access | C | |
| dc.subject | machine learning | en |
| dc.subject | data-driven | en |
| dc.subject | physics-informed | en |
| dc.subject | navigation systems | en |
| dc.subject | target tracking | en |
| dc.subject | state estimation | en |
| dc.subject | robust estimation | en |
| dc.title | Augmented physics-based machine learning for navigation and tracking | en |
| dc.type | Článek v databázi WoS (Jimp) | |
| dc.type | ČLÁNEK | |
| dc.type.status | Published Version | |
| local.files.count | 1 | * |
| local.files.size | 1664414 | * |
| local.has.files | yes | * |
| local.identifier.eid | 2-s2.0-85181839239 |
Files
Original bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- article_TAES23_ImStDuCl.pdf
- Size:
- 1.59 MB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: