Every 3-connected {K1,3,Γ3}-free graph is Hamilton-connected

dc.contributor.authorKabela, Adam
dc.contributor.authorRyjáček, Zdeněk
dc.contributor.authorSkyvová, Mária
dc.contributor.authorVrána, Petr
dc.date.accessioned2025-06-20T08:33:23Z
dc.date.available2025-06-20T08:33:23Z
dc.date.issued2025
dc.date.updated2025-06-20T08:33:23Z
dc.description.abstractWe show that every 3-connected {K1,3, Γ3}-free graph is Hamilton-connected, where Γ3 is the graph obtained by joining two vertex-disjoint triangles with a path of length 3. This resolves one of the two last open cases in the characterization of pairs of connected forbidden subgraphs implying Hamilton-connectedness. The proof is based on a new closure technique, developed in a previous paper, and on a structural analysis of small subgraphs, cycles and paths in line graphs of multigraphs. The most technical steps of the analysis are computer-assisted.en
dc.format19
dc.identifier.document-number001350743800001
dc.identifier.doi10.1016/j.disc.2024.114305
dc.identifier.issn0012-365X
dc.identifier.obd43945830
dc.identifier.orcidKabela, Adam 0000-0002-0430-1797
dc.identifier.orcidRyjáček, Zdeněk 0000-0002-9877-0825
dc.identifier.orcidSkyvová, Mária 0000-0001-5077-8804
dc.identifier.orcidVrána, Petr 0000-0001-9246-474X
dc.identifier.urihttp://hdl.handle.net/11025/60144
dc.language.isoen
dc.project.IDGA20-09525S
dc.relation.ispartofseriesDiscrete Mathematics
dc.rights.accessC
dc.subjectHamilton-connecteden
dc.subjectclosureen
dc.subjectforbidden subgraphen
dc.subjectclaw-freeen
dc.subjectGamma(3)-freeen
dc.titleEvery 3-connected {K1,3,Γ3}-free graph is Hamilton-connecteden
dc.typeČlánek v databázi WoS (Jimp)
dc.typeČLÁNEK
dc.type.statusPublished Version
local.files.count1*
local.files.size619169*
local.has.filesyes*
local.identifier.eid2-s2.0-85207767971

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
1-s2.0-S0012365X24004369-main.pdf
Size:
604.66 KB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections