Sentences vs Phrases in Neural Speech Synthesis

dc.contributor.authorTihelka, Daniel
dc.contributor.authorMatoušek, Jindřich
dc.contributor.authorHanzlíček, Zdeněk
dc.contributor.authorVladař, Lukáš
dc.date.accessioned2025-06-20T08:36:08Z
dc.date.available2025-06-20T08:36:08Z
dc.date.issued2024
dc.date.updated2025-06-20T08:36:08Z
dc.description.abstractThe neural network-based TTS models are usually trained and inferred on the whole sentences, or, in general, on longer chunks of speech. However, these may negatively affect the responsiveness of the TTS system in cases when latency should be kept as small as possible. We present experiments using smaller chunk lengths, namely phrases, and their impact on speech quality when various chunk length combinations are used for training and inference in the VITS synthesizer.en
dc.format10
dc.identifier.document-number001307848400004
dc.identifier.doi10.1007/978-3-031-70566-3_4
dc.identifier.isbn978-3-031-70565-6
dc.identifier.issn0302-9743
dc.identifier.obd43944180
dc.identifier.orcidTihelka, Daniel 0000-0002-3149-2330
dc.identifier.orcidMatoušek, Jindřich 0000-0002-7408-7730
dc.identifier.orcidHanzlíček, Zdeněk 0000-0002-4001-9289
dc.identifier.orcidVladař, Lukáš 0009-0009-8047-7303
dc.identifier.urihttp://hdl.handle.net/11025/60351
dc.language.isoen
dc.project.IDSGS-2022-017
dc.project.IDGA22-27800S
dc.publisherSpringer International Publishing
dc.relation.ispartofseries27th International Conference on Text, Speech, and Dialogue, TSD 2024
dc.subjectphraseen
dc.subjectsentenceen
dc.subjectneural text-to-speechen
dc.subjectVITSen
dc.titleSentences vs Phrases in Neural Speech Synthesisen
dc.typeStať ve sborníku (D)
dc.typeSTAŤ VE SBORNÍKU
dc.type.statusPublished Version
local.files.count1*
local.files.size237095*
local.has.filesyes*
local.identifier.eid2-s2.0-85204346963

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
978-3-031-70566-3_4.pdf
Size:
231.54 KB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: