Tensor Train Discrete Grid-Based Filters: Breaking the Curse of Dimensionality

dc.contributor.authorMatoušek, Jakub
dc.contributor.authorBrandner, Marek
dc.contributor.authorDuník, Jindřich
dc.contributor.authorPunčochář, Ivo
dc.date.accessioned2025-06-20T08:24:18Z
dc.date.available2025-06-20T08:24:18Z
dc.date.issued2024
dc.date.updated2025-06-20T08:24:18Z
dc.description.abstractThis paper deals with the state estimation of stochastic systems and examines the possible employment of tensor decompositions in grid-based filtering routines, in particular, the tensor-train decomposition. The aim is to show that these techniques can lead to a massive reduction in both the computational and storage complexity of grid-based filtering algorithms without considerable tradeoffs in accuracy. This claim is supported by an algorithm descriptions and numerical illustrations.en
dc.format6
dc.identifier.document-number001316057100004
dc.identifier.doi10.1016/j.ifacol.2024.08.498
dc.identifier.isbnneuvedeno
dc.identifier.issn2405-8971
dc.identifier.obd43944052
dc.identifier.orcidMatoušek, Jakub 0000-0001-5014-1088
dc.identifier.orcidBrandner, Marek 0000-0002-4295-1854
dc.identifier.orcidDuník, Jindřich 0000-0003-1460-8845
dc.identifier.orcidPunčochář, Ivo 0000-0003-0528-7998
dc.identifier.urihttp://hdl.handle.net/11025/59604
dc.language.isoen
dc.project.IDSGS-2022-022
dc.project.IDEH22_008/0004590
dc.publisherElsevier
dc.relation.ispartofseries20th IFAC Symposium on System Identification, SYSID 2024
dc.subjectstate estimationen
dc.subjecttensor decompositionen
dc.subjecttensor-trainen
dc.subjectpoint-mass methoden
dc.titleTensor Train Discrete Grid-Based Filters: Breaking the Curse of Dimensionalityen
dc.typeStať ve sborníku (D)
dc.typeSTAŤ VE SBORNÍKU
dc.type.statusPublished Version
local.files.count1*
local.files.size683352*
local.has.filesyes*
local.identifier.eid2-s2.0-85205791489

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
article_SYSID24_MaBrDuPu.pdf
Size:
667.34 KB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: