Gausovské procesy v identifikaci systémů a odhadu stavu

dc.contributor.authorPrüher, Jakub
dc.date.accepted2019-2-8
dc.date.accessioned2020-07-17T13:44:44Z
dc.date.available2017-11-1
dc.date.available2020-07-17T13:44:44Z
dc.date.issued2019
dc.date.submitted2018-6-11
dc.description.abstractRegrese s gaussovským procesem je bayesovský neparametrický model, který slučuje vysokou flexibilitu s traktabilní bayesovskou inferencí. První aplikací GP modelů v této disertaci je identifikace nelineárních časově invariantních systémů afinních v řízení s funkcionální nejistotou. V disertaci navrhuji identifikační metodu s rekurzivním gaussovským procesem, kterou dále aplikuji ve funkcionálním duálním adaptivním řízení. Ve druhé části disertace se soustředím na lokální nelineární sigma-bodové filtry, které aproximují netraktabilní momentové integrály numerickými kvadraturními pravidly. GP regrese hraje důležitou roli v bayesovské kvadratuře, která nahlíží na kvadraturu jako na problém pravděpodobnostní inference. Principu bayesovské kvadratury využívám ke konstrukci obecných kvadraturních momentových transformací na bázi gaussovského a studentského t-procesu, které následně aplikuji pro konstrukci sigma-bodových filtrů. Na varianci integrálu je nahlíženo jako na model integrační chyby, kterou navržené momentové transformace reflektují ve výsledných kovariancích. Finální přínos je věnován využití derivace integrované funkce ke snížení variance integrálu. Dále také dokazuji spojitosti s linearizační transformací využívané rozšířeným Kalmanovým filtrem.cs
dc.description.abstract-translatedGaussian process regression is a Bayesian nonparametric model, which combines high expressiveness with tractable Bayesian inference. The first application of GP models in this thesis is the identification of nonlinear time-invariant systems affine in control with functional uncertainty. I develop a recursive GP system identification method and apply it in a functional dual adaptive control. In the second part of this thesis, I focus on the local nonlinear sigma-point filters, which approximate the intractable moment integrals by means of numerical quadrature rules. GP regression plays an important role in development of the Bayesian quadrature (BQ), which views numerical integration as probabilistic inference. I use the BQ approach to construct the moment transforms based on the Gaussian process quadrature and the Student's t-process quadrature. Variance of the integral is seen as a model of the integration error, which the proposed moment transformations reflect in the resulting covariances. The final contribution is devoted to utilization of derivative observations for lowering the integral variance. Furthermore, I show connections to the linearization transform employed in the well-known extended Kalman filter.en
dc.description.resultObhájenocs
dc.format127 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier76855
dc.identifier.urihttp://hdl.handle.net/11025/37779
dc.language.isoenen
dc.publisherZápadočeská univerzita v Plznics
dc.relation.isreferencedbyhttps://portal.zcu.cz/StagPortletsJSR168/CleanUrl?urlid=prohlizeni-prace-detail&praceIdno=76855
dc.rightsPlný text práce je přístupný bez omezení.cs
dc.rights.accessopenAccessen
dc.subjectregrese s gaussovským procesemcs
dc.subjectidentifikace systémůcs
dc.subjectbayesovská kvadraturacs
dc.subjectnelineární filtracecs
dc.subjectkalmanův filtrcs
dc.subject.translatedgaussian process regressionen
dc.subject.translatedsystem identificationen
dc.subject.translatedbayesian quadratureen
dc.subject.translatednonlinear filteringen
dc.subject.translatedkalman filteren
dc.thesis.degree-grantorZápadočeská univerzita v Plzni. Fakulta aplikovaných vědcs
dc.thesis.degree-levelDoktorskýcs
dc.thesis.degree-namePh.D.cs
dc.thesis.degree-programAplikované vědy a informatikacs
dc.titleGausovské procesy v identifikaci systémů a odhadu stavucs
dc.title.alternativeGaussian Process Models in System Identification and State Estimationen
dc.typedisertační prácecs

Files

Original bundle
Showing 1 - 3 out of 3 results
No Thumbnail Available
Name:
phd_thesis_main_onesided.pdf
Size:
1.43 MB
Format:
Adobe Portable Document Format
Description:
Plný text práce
No Thumbnail Available
Name:
posudky-odp-pruher.pdf
Size:
4.39 MB
Format:
Adobe Portable Document Format
Description:
Posudek oponenta práce
No Thumbnail Available
Name:
protokol-odp-pruher.pdf
Size:
843.71 KB
Format:
Adobe Portable Document Format
Description:
Průběh obhajoby práce