On fusion of probability density functions using tensor train decomposition

dc.contributor.authorAjgl, Jiří
dc.contributor.authorStraka, Ondřej
dc.date.accessioned2025-06-20T08:35:12Z
dc.date.available2025-06-20T08:35:12Z
dc.date.issued2024
dc.date.updated2025-06-20T08:35:12Z
dc.description.abstractNon-linear filters consider probability density functions in various non-parametric representations. They often suffer from the curse of dimensionality. Computation of weights over a grid of points becomes infeasible even for low dimensions. Filters processing data produced in different sensor nodes provide their own probability densities. Combination of such densities is desired. A favourite paradigm is to construct a fused density as a weighted arithmetic or geometric mean of the individual densities. This paper prospects the fusion for tensor train representation of densities produced by point-mass filters. In this representation, the weights are neither evaluated for a whole grid nor fully stored in the memory of the filters. Aspects of tensor-train-based fusion are discussed, such as computation of auxiliary characteristics and experience with numerical examples.en
dc.format6
dc.identifier.document-number001334560000203
dc.identifier.doi10.23919/FUSION59988.2024.10706475
dc.identifier.isbn978-1-73774-976-9
dc.identifier.obd43944068
dc.identifier.orcidAjgl, Jiří 0000-0001-7863-9697
dc.identifier.orcidStraka, Ondřej 0000-0003-3066-5882
dc.identifier.urihttp://hdl.handle.net/11025/60253
dc.language.isoen
dc.project.IDSGS-2022-022
dc.project.IDGA22-11101S
dc.publisherIEEE
dc.relation.ispartofseries27th International Conference on Information Fusion, FUSION 2024
dc.subjectprobability density fusionen
dc.subjectpoint-mass filteren
dc.subjecttensor train decompositionen
dc.titleOn fusion of probability density functions using tensor train decompositionen
dc.typeStať ve sborníku (D)
dc.typeSTAŤ VE SBORNÍKU
dc.type.statusPublished Version
local.files.count1*
local.files.size357394*
local.has.filesyes*
local.identifier.eid2-s2.0-85207691299

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
article_FUSION24_AjSt.pdf
Size:
349.02 KB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: