On fusion of probability density functions using tensor train decomposition
| dc.contributor.author | Ajgl, Jiří | |
| dc.contributor.author | Straka, Ondřej | |
| dc.date.accessioned | 2025-06-20T08:35:12Z | |
| dc.date.available | 2025-06-20T08:35:12Z | |
| dc.date.issued | 2024 | |
| dc.date.updated | 2025-06-20T08:35:12Z | |
| dc.description.abstract | Non-linear filters consider probability density functions in various non-parametric representations. They often suffer from the curse of dimensionality. Computation of weights over a grid of points becomes infeasible even for low dimensions. Filters processing data produced in different sensor nodes provide their own probability densities. Combination of such densities is desired. A favourite paradigm is to construct a fused density as a weighted arithmetic or geometric mean of the individual densities. This paper prospects the fusion for tensor train representation of densities produced by point-mass filters. In this representation, the weights are neither evaluated for a whole grid nor fully stored in the memory of the filters. Aspects of tensor-train-based fusion are discussed, such as computation of auxiliary characteristics and experience with numerical examples. | en |
| dc.format | 6 | |
| dc.identifier.document-number | 001334560000203 | |
| dc.identifier.doi | 10.23919/FUSION59988.2024.10706475 | |
| dc.identifier.isbn | 978-1-73774-976-9 | |
| dc.identifier.obd | 43944068 | |
| dc.identifier.orcid | Ajgl, Jiří 0000-0001-7863-9697 | |
| dc.identifier.orcid | Straka, Ondřej 0000-0003-3066-5882 | |
| dc.identifier.uri | http://hdl.handle.net/11025/60253 | |
| dc.language.iso | en | |
| dc.project.ID | SGS-2022-022 | |
| dc.project.ID | GA22-11101S | |
| dc.publisher | IEEE | |
| dc.relation.ispartofseries | 27th International Conference on Information Fusion, FUSION 2024 | |
| dc.subject | probability density fusion | en |
| dc.subject | point-mass filter | en |
| dc.subject | tensor train decomposition | en |
| dc.title | On fusion of probability density functions using tensor train decomposition | en |
| dc.type | Stať ve sborníku (D) | |
| dc.type | STAŤ VE SBORNÍKU | |
| dc.type.status | Published Version | |
| local.files.count | 1 | * |
| local.files.size | 357394 | * |
| local.has.files | yes | * |
| local.identifier.eid | 2-s2.0-85207691299 |
Files
Original bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- article_FUSION24_AjSt.pdf
- Size:
- 349.02 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: