Deep learning techniques for model reference adaptive control and identification of complex systems

dc.contributor.authorJamshidi, Mohammad
dc.contributor.authorTalla, Jakub
dc.contributor.authorPeroutka, Zdeněk
dc.date.accessioned2021-03-15T11:00:30Z
dc.date.available2021-03-15T11:00:30Z
dc.date.issued2020
dc.description.abstract-translatedAlthough many mathematical and analytical techniques have been presented to control and identify the dynamic systems, there are vast fields of research needing to be developed and extended through Deep Learning (DL) approaches. In this paper, we try to describe how intelligent controllers can interact under control systems in a unique DL-based package. Despite the fact that conventional techniques have some advantages, such as the appropriate reliability and simple implementation for industrial goals, intelligent methods have potential to solve complex problems and identify nonlinear systems. Hence the concentration of this research is on the use of DL techniques to improve the system identification and control in model reference adaptive controllers. A dataset is also used to validate the responses of the proposed techniques. The simulation results demonstrate that not only are the proposed methods consistently appropriate to control the complex systems but also they have acceptable responses in order to utilize for system identification.en
dc.format7 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationJAMSHIDI, M. TALLA, J. PEROUTKA, Z.Deep learning techniques for model reference adaptive control and identification of complex systems. In: Proceedings of the 2020 19th International Conference on Mechatronics - Mechatronika (ME 2020). Piscataway: IEEE, 2020. s. 147-153. ISBN 978-1-72815-602-6.cs
dc.identifier.doi10.1109/ME49197.2020.9286698
dc.identifier.isbn978-1-72815-602-6
dc.identifier.obd43931414
dc.identifier.uri2-s2.0-85099299490
dc.identifier.urihttp://hdl.handle.net/11025/42948
dc.language.isoenen
dc.project.IDEF18_069/0009855/Elektrotechnické technologie s vysokým podílem vestavěné inteligencecs
dc.publisherIEEEen
dc.relation.ispartofseriesProceedings of the 2020 19th International Conference on Mechatronics - Mechatronika (ME 2020)en
dc.rightsPlný text je přístupný v rámci univerzity přihlášeným uživatelům.cs
dc.rights© IEEEen
dc.rights.accessrestrictedAccessen
dc.subject.translatedadaptive controlen
dc.subject.translatedartificial neural networksen
dc.subject.translateddeep learningen
dc.subject.translatedintelligent controlen
dc.subject.translatedsystem identificationen
dc.titleDeep learning techniques for model reference adaptive control and identification of complex systemsen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files