Impulse signals classification using one dimensional convolutional neural network

dc.contributor.authorOlkhovskiy, Mikhail
dc.contributor.authorMüllerová, Eva
dc.contributor.authorMartínek, Petr
dc.date.accessioned2021-02-15T11:00:18Z
dc.date.available2021-02-15T11:00:18Z
dc.date.issued2020
dc.description.abstract-translatedThe main purpose of this work is to propose a modern one-dimensional convolutional neural network (1 D CNN) configurations for distinguishing separate PD impulses from different types of PD sources while the parameters of these sources are changed. Three PD sources were built for signal generation: corona discharge, discharge in a void, and surface discharge. The reason for using separate PD impulses for classification is to develop a universal tool with the ability to recognize an insulation defects by analysing very few events in the insulation in a short range of time. Additionally, we found the optimal sample rates for the data acquisition for these network configurations. The necessity of signal filtering was also tested. The following configurations of a neural network were proposed: configuration for classification raw PD impulses; configuration for classification of PD impulses represented by power spectral density, for both filtered and unfiltered variants.en
dc.format9 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationOLKHOVSKIY, M., MÜLLEROVÁ, E., MARTÍNEK, P. Impulse signals classification using one dimensional convolutional neural network. Journal of electrical engineering, 2020, roč. 71, č. 6, s. 397-405. ISSN 1335-3632.cs
dc.identifier.document-number604437400004
dc.identifier.doi10.2478/jee-2020-0054
dc.identifier.issn1335-3632
dc.identifier.obd43931436
dc.identifier.uri2-s2.0-85098978061
dc.identifier.urihttp://hdl.handle.net/11025/42687
dc.language.isoenen
dc.project.IDSGS-2018-023/Analýza a vyhodnocení dodávky elektrické energie simulací a modelováním pro dodržení optimálních spolehlivostních a kvalitativních parametrů, s respektováním integrace nových distribuovaných a obnovitelných zdrojů do elektrizační soustavy i odpovídající akumulace, při využití nových, pokročilých metod teoretického a aplikačního výzkumu v elektroenergeticecs
dc.publisherDe Gruyteren
dc.relation.ispartofseriesJournal of Electrical engineeringen
dc.rights© De Gruyteren
dc.rights.accessopenAccessen
dc.subject.translatedconvolutional neural networksen
dc.subject.translatedone-dimensional convolutional neural networken
dc.subject.translatedpartial dischargeen
dc.subject.translatedsignal analysisen
dc.titleImpulse signals classification using one dimensional convolutional neural networken
dc.typečlánekcs
dc.typearticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files