SeaTurtleID2022: A long-span dataset for reliable sea turtle re-identification

dc.contributor.authorAdam, Lukáš
dc.contributor.authorČermák, Vojtěch
dc.contributor.authorPapafitsoros, Kostas
dc.contributor.authorPicek, Lukáš
dc.date.accessioned2025-06-20T08:38:01Z
dc.date.available2025-06-20T08:38:01Z
dc.date.issued2024
dc.date.updated2025-06-20T08:38:01Z
dc.description.abstractThis paper introduces the first public large-scale, long-span dataset with sea turtle photographs captured in the wild-SeaTurtleID2022. The dataset contains 8729 photographs of 438 unique individuals collected within 13 years, making it the longest-spanned dataset for animal re-identification. Each photograph includes various annotations, e.g., identity, encounter timestamp, and body parts segmentation masks. Instead of a standard ''random"split, the dataset allows for two realistic and ecologically motivated splits: (i) time-aware: a closed-set with training, validation, and test data from different days/years, and (ii) open-set: with new unknown individuals in test and validation sets. We show that time-aware splits are essential for benchmarking methods for re-identification, as random splits lead to performance overestimation. Furthermore, a baseline instance segmentation and re-identification performance over various body parts is provided. At last, an end-to-end system for sea turtle re-identification is proposed and evaluated. The proposed system based on Hybrid Task Cascade for head instance segmentation and ArcFace-trained feature-extractor achieved an accuracy of 86.8%.en
dc.format11
dc.identifier.document-number001222964607028
dc.identifier.doi10.1109/WACV57701.2024.00699
dc.identifier.isbn979-8-3503-1892-0
dc.identifier.issn2472-6737
dc.identifier.obd43943920
dc.identifier.orcidPicek, Lukáš 0000-0002-6041-9722
dc.identifier.urihttp://hdl.handle.net/11025/60553
dc.language.isoen
dc.project.ID90254
dc.project.IDSS05010008
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relation.ispartofseries2024 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2024
dc.subjectSeaTurtleID2022en
dc.subjectlong-span dataseten
dc.subjectsea turtle re-identificationen
dc.titleSeaTurtleID2022: A long-span dataset for reliable sea turtle re-identificationen
dc.typeStať ve sborníku (D)
dc.typeSTAŤ VE SBORNÍKU
dc.type.statusPublished Version
local.files.count1*
local.files.size2274229*
local.has.filesyes*
local.identifier.eid2-s2.0-85191982358

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
SeaTurtleID2022_A_long-span_dataset_for_reliable_sea_turtle_re-identification.pdf
Size:
2.17 MB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: