Implementace algoritmu Empirical-Mode Decomposition (EMD) pro vícerozměrná data
| dc.contributor.advisor | Prokop Tomáš, Ing. | |
| dc.contributor.author | Vampol, Jan | |
| dc.contributor.referee | Mouček Roman, Ing. Ph.D. | |
| dc.date.accepted | 2017-6-8 | |
| dc.date.accessioned | 2018-01-15T15:04:46Z | |
| dc.date.available | 2016-10-10 | |
| dc.date.available | 2018-01-15T15:04:46Z | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-5-4 | |
| dc.description.abstract | Zpracování EEG signálu je stále aktuální problém. Mezi běžně používané časově-frekvenční metody patří např. waveletová transformace nebo Matching Pursuit. Ty ale umí pracovat pouze se signálem o jediném kanálu. Jejich aplikace na každý kanál zvlášť vede ke ztrátě informací projevujících se napříč kanály. Z toho důvodu bylo navrženo několik metod, které dokáží pracovat s vícekanálovým signálem. Mezi tyto metody patří algoritmus vícerozměrné empirické modální dekompozice. Jedná se o rozšíření empirické modální dekompozice (EMD). Algoritmus rozkládá signál na tzv. vlastní modální funkce (IMF). Algoritmus MEMD byl implementován do existující knihovny EEGHHT a otestován na reálných EEG datech. Z testování se ukázalo, že MEMD řeší problém ztráty informací a také zajišťuje stejný počet IMF pro každý kanál signálu. | cs |
| dc.description.abstract-translated | EEG signal processing is frequently approached problem. Commonly used methods include Wavelet Transformation and Matching Pursuit. Those methods are limited to process only single channel signals and can't be used on multichannel signals directly. This problem can be solved by applying mentioned algorithms on each channel separately. A consequence of this approach is a loss of information among channels. Several methods were proposed to work directly with multichannel signals. One of those methods is Multivariate Empirical Mode Decomposition (MEMD). It is an extension of Empirical Mode Decomposition. EMD is a method, which decomposes signal into a set of so-called Intrinsic Mode Functions (IMF). MEMD algorithm was implemented into the existing EEGHHT library and it was tested on real EEG data. Testing showed that MEMD solved the problem of information loss and also ensured the same amount of IMFs per channel. | en |
| dc.description.result | Obhájeno | cs |
| dc.format | 46 s. | cs |
| dc.format.mimetype | application/pdf | |
| dc.identifier | 67776 | |
| dc.identifier.uri | http://hdl.handle.net/11025/27685 | |
| dc.language.iso | cs | cs |
| dc.publisher | Západočeská univerzita v Plzni | cs |
| dc.rights | Plný text práce je přístupný bez omezení. | cs |
| dc.rights.access | openAccess | en |
| dc.subject | elektroencefalografie | cs |
| dc.subject | evokované potenciály | cs |
| dc.subject | vícerozměrná empirická modální dekompozice | cs |
| dc.subject | hilbert-huangova transformace | cs |
| dc.subject.translated | electroencephalography | en |
| dc.subject.translated | event-related potential | en |
| dc.subject.translated | multivariate empirical mode decomposition | en |
| dc.subject.translated | hilbert-huang transform | en |
| dc.thesis.degree-grantor | Západočeská univerzita v Plzni. Fakulta aplikovaných věd | cs |
| dc.thesis.degree-level | Bakalářský | cs |
| dc.thesis.degree-name | Bc. | cs |
| dc.thesis.degree-program | Inženýrská informatika | cs |
| dc.title | Implementace algoritmu Empirical-Mode Decomposition (EMD) pro vícerozměrná data | cs |
| dc.title.alternative | Implementation of Empirical-Mode Decomposition (EMD) algorithm for multidimensional data | en |
| dc.type | bakalářská práce | cs |
| local.relation.IS | https://portal.zcu.cz/StagPortletsJSR168/CleanUrl?urlid=prohlizeni-prace-detail&praceIdno=67776 |
Files
Original bundle
1 - 4 out of 4 results
No Thumbnail Available
- Name:
- Vampol-Jan-2017.pdf
- Size:
- 2.52 MB
- Format:
- Adobe Portable Document Format
- Description:
- Plný text práce
No Thumbnail Available
- Name:
- A13B0459P-hodnoceni.pdf
- Size:
- 409.55 KB
- Format:
- Adobe Portable Document Format
- Description:
- Posudek vedoucího práce
No Thumbnail Available
- Name:
- A13B0459P-posudek.pdf
- Size:
- 689.5 KB
- Format:
- Adobe Portable Document Format
- Description:
- Posudek oponenta práce
No Thumbnail Available
- Name:
- A13B0459P-obhajoba.pdf
- Size:
- 220.27 KB
- Format:
- Adobe Portable Document Format
- Description:
- Průběh obhajoby práce