Implementace algoritmu Empirical-Mode Decomposition (EMD) pro vícerozměrná data
Date issued
2017
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Západočeská univerzita v Plzni
Abstract
Zpracování EEG signálu je stále aktuální problém. Mezi běžně používané časově-frekvenční metody patří např. waveletová transformace nebo Matching Pursuit. Ty ale umí pracovat pouze se signálem o jediném kanálu. Jejich aplikace na každý kanál zvlášť vede ke ztrátě informací projevujících se napříč kanály. Z toho důvodu bylo navrženo několik metod, které dokáží pracovat s vícekanálovým signálem. Mezi tyto metody patří algoritmus vícerozměrné empirické modální dekompozice. Jedná se o rozšíření empirické modální dekompozice (EMD). Algoritmus rozkládá signál na tzv. vlastní modální funkce (IMF).
Algoritmus MEMD byl implementován do existující knihovny EEGHHT a otestován na reálných EEG datech. Z testování se ukázalo, že MEMD řeší problém ztráty informací a také zajišťuje stejný počet IMF pro každý kanál signálu.
Description
Subject(s)
elektroencefalografie, evokované potenciály, vícerozměrná empirická modální dekompozice, hilbert-huangova transformace