Sémantická segmentace obrazu pomocí hlubokých neuronových sítí

Abstract

Tato diplomová práce se zabývá semántickou segmentací obrazu z kamery auta pomocí hlubokých neuronových sítí. Aktuálně nejlepší model aplikující sémantickou segmentaci na Cityscapes datasetu DeepLabV3+ byl kompletně re-implementován s použitím frameworků Keras a TensorFlow. Tento model byl předtrénován na ImageNet datasetu a poté byl transformován pomocí Cityscapes datasetu k tvorbě sémantické segmentace. Kvalita tohoto modelu byla ověřena pomocí validačního setu ze Cityscapes datasetu, na kterém model dosáhl výkonosti 73.55% IoU. Na závěr byl model přetrénován pomocí KPIT datasetu, aby vytvářel sémantickou segmentaci obrazu ze zadní kamery v autě, na které je čočka zvaná rybí oko. Na KPIT datasetu bylo provedeno několik experimentů. Nejlepší model dosáhl výkonosti 59.26% IoU na validační sadě.

Description

Subject(s)

hlubokoké neurovnové sítě, konvoluční neuronové sítě, deeplab, sémantická segmentace

Citation

Collections