Examining Vortex-Induced Vibration through Convolutional Neural Networks

dc.contributor.authorBublík, Ondřej
dc.contributor.authorHeidler, Václav
dc.contributor.authorPecka, Aleš
dc.contributor.authorVimmr, Jan
dc.date.accessioned2025-08-07T07:32:15Z
dc.date.available2025-08-07T07:32:15Z
dc.date.issued2023
dc.date.updated2025-08-07T07:32:15Z
dc.description.abstractThis paper aims to apply CNNs to fluid-structure interaction (FSI) problems. It is worth noting that most prior research utilizing neural networks for fluid flow prediction assumed stationary boundaries. However, for FSI applications, CNNs must predict flow fields with moving boundaries. To address this challenge, we have designed and trained a CNN specifically tailored to predict unsteady, incompressible fluid flow with moving boundaries.en
dc.format4
dc.identifier.isbn978-80-261-1177-1
dc.identifier.obd43941427
dc.identifier.orcidBublík, Ondřej 0000-0002-6427-2748
dc.identifier.orcidHeidler, Václav 0000-0002-9419-4453
dc.identifier.orcidPecka, Aleš 0000-0002-3506-3138
dc.identifier.orcidVimmr, Jan 0000-0003-3311-4592
dc.identifier.urihttp://hdl.handle.net/11025/62602
dc.language.isoen
dc.project.IDGA21-31457S
dc.publisherUniversity of West Bohemia, Univerzitní 8, 301 00 Plze¬, Czech Republic, IC 49777513
dc.relation.ispartofseriesComputational Mechanics 2023
dc.subjectvortex inducet vibration, convolution neural network, fluid-structure interactionen
dc.titleExamining Vortex-Induced Vibration through Convolutional Neural Networksen
dc.typeStať ve sborníku (O)
dc.typeSTAŤ VE SBORNÍKU
dc.type.statusPublished Version
local.files.count1*
local.files.size648883*
local.has.filesyes*

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
CM2023_Conference_Proceedings-14-17.pdf
Size:
633.67 KB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: