On the Cheeger problem for rotationally invariant domains domains

dc.contributor.authorBobkov, Vladimír
dc.contributor.authorParini, Enea
dc.date.accessioned2022-03-28T10:00:32Z
dc.date.available2022-03-28T10:00:32Z
dc.date.issued2021
dc.description.abstract-translatedWe investigate the properties of the Cheeger sets of rotationally invariant, bounded domains ⊂ Rn. For a rotationally invariant Cheeger set C, the free boundary ∂C ∩ consists of pieces of Delaunay surfaces, which are rotationally invariant surfaces of constant mean curvature. We show that if is convex, then the free boundary of C consists only of pieces of spheres and nodoids. This result remains valid for nonconvex domains when the generating curve of C is closed, convex, and of class C1,1. Moreover, we provide numerical evidence of the fact that, for general nonconvex domains, pieces of unduloids or cylinders can also appear in the free boundary of C.en
dc.format20 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationBOBKOV, V. PARINI, E. On the Cheeger problem for rotationally invariant domains domains. MANUSCRIPTA MATHEMATICA, 2021, roč. 166, č. 3-4, s. 503-522. ISSN: 0025-2611cs
dc.identifier.document-number589464000001
dc.identifier.doi10.1007/s00229-020-01260-9
dc.identifier.issn0025-2611
dc.identifier.obd43935191
dc.identifier.uri2-s2.0-85095999523
dc.identifier.urihttp://hdl.handle.net/11025/47286
dc.language.isoenen
dc.project.IDLO1506/PUNTIS - Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnostcs
dc.publisherSpringeren
dc.relation.ispartofseriesManuscripta Mathematicaen
dc.rights© Springeren
dc.rights.accessopenAccessen
dc.subject.translatedCheeger problemen
dc.subject.translatedrotationally invariant domainsen
dc.titleOn the Cheeger problem for rotationally invariant domains domainsen
dc.typečlánekcs
dc.typearticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
Bobkov-Parini2021_Article_OnTheCheegerProblemForRotation.pdf
Size:
705.69 KB
Format:
Adobe Portable Document Format

Collections