Bounding Box Detection in Visual Tracking: Measurement Model Parameter Estimation

dc.contributor.authorKrejčí, Jan
dc.contributor.authorKost, Oliver
dc.contributor.authorStraka, Ondřej
dc.date.accessioned2025-06-20T08:42:26Z
dc.date.available2025-06-20T08:42:26Z
dc.date.issued2023
dc.date.updated2025-06-20T08:42:26Z
dc.description.abstractCommon visual tracking algorithms make use of measurement models whose parameters need to be specified. These are, namely, measurement noise covariance related to spatial error of detections provided by a visual detection algorithm, probability of detection, and expected number of clutter detections. The measurement model parameters are often hand selected, using no data-based knowledge. This paper proposes a technique to estimate the parameters by reliably associating detections to annotations in each video frame. The technique is verified on the publicly available MOT-17 dataset.en
dc.format8
dc.identifier.doi10.23919/FUSION52260.2023.10224194
dc.identifier.isbn979-8-89034-485-4
dc.identifier.issnneuvedeno
dc.identifier.obd43940677
dc.identifier.orcidKrejčí, Jan 0000-0002-0027-6870
dc.identifier.orcidKost, Oliver 0000-0002-6355-6677
dc.identifier.orcidStraka, Ondřej 0000-0003-3066-5882
dc.identifier.urihttp://hdl.handle.net/11025/60761
dc.language.isoen
dc.project.IDSGS-2022-022
dc.publisherIEEE
dc.relation.ispartofseries2023 26th International Conference on Information Fusion, FUSION 2023
dc.subjectvisual trackingen
dc.subjectbounding boxen
dc.subjectnoise covariance estimationen
dc.subjectprobability of detectionen
dc.subjectmeasurement equationen
dc.titleBounding Box Detection in Visual Tracking: Measurement Model Parameter Estimationen
dc.typeStať ve sborníku (D)
dc.typeSTAŤ VE SBORNÍKU
dc.type.statusPublished Version
local.files.count1*
local.files.size1529305*
local.has.filesyes*
local.identifier.eid2-s2.0-85171595180

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
article_FUSION23_KrKoSt.pdf
Size:
1.46 MB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: