Traveling waves for unbalanced bistable equation with density dependent diffusion

dc.contributor.authorDrábek, Pavel
dc.contributor.authorZahradníková, Michaela
dc.date.accessioned2021-11-22T11:00:29Z
dc.date.available2021-11-22T11:00:29Z
dc.date.issued2021
dc.description.abstractWe study the existence and qualitative properties of traveling wave solutions for the unbalanced bistable reaction-diffusion equation with a rather general density dependent diffusion coeffcient. In particular, it allows for singularities and/or degenerations as well as discontinuities of the fi rst kind at a fi nite number of points. The reaction term vanishes at equilibria and it is a continuous, possibly non-Lipschitz function. We prove the existence of a unique speed of propagation and a unique traveling wave pro le (up to translation) which is a non-smooth function in general. In the case of the power-type behavior of the diffusion and reaction near equilibria we provide detailed asymptotic analysis of the pro le.en
dc.format21 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationDRÁBEK, P. ZAHRADNÍKOVÁ, M. Traveling waves for unbalanced bistable equation with density dependent diffusion. Electronic Journal of Differential Equations, 2021, roč. 2021, č. 76, s. 1-21. ISSN: 1072-6691cs
dc.identifier.document-number700793400001
dc.identifier.issn1072-6691
dc.identifier.obd43933394
dc.identifier.uri2-s2.0-85115746667
dc.identifier.urihttp://hdl.handle.net/11025/45952
dc.language.isoenen
dc.project.IDSGS-2019-010/Kvalitativní a kvantitativní studium matematických modelů IV.cs
dc.relation.ispartofseriesElectronic Journal of Differential Equationsen
dc.subject.translateddensity dependent diffusionen
dc.subject.translatedunbalanced bistable reaction termen
dc.subject.translateddegenerate and singular diffusionen
dc.subject.translatedtraveling waveen
dc.subject.translateddegenerate non-Lipschitz reactionen
dc.titleTraveling waves for unbalanced bistable equation with density dependent diffusionen
dc.typečlánekcs
dc.typearticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Collections