Do Not Lose to Losses for SnakeCLEF2024

dc.contributor.authorSieber, Matěj
dc.contributor.authorŽelezný, Tomáš
dc.date.accessioned2025-06-20T08:34:38Z
dc.date.available2025-06-20T08:34:38Z
dc.date.issued2024
dc.date.updated2025-06-20T08:34:38Z
dc.description.abstractThis paper presents participation in the SnakeCLEF 2024 challenge, which aims to automate the identification of snake species. We explore various custom loss functions that incorporate the venomousness of snakes. These loss functions are used to train the Swin-v2 tiny model with same training specification as baseline solution to accurately measure the impact of custom loss functions. Swin-v2 tiny model is beneficial due to its low computational demand and opens the possibility for use in handheld devices. Our results show that the best approach for maximising performance on the custom competition metrics is to apply a soft target set according to the venomousness of the snake. The best accuracy is achieved by the model trained with loss, which weights the different classes according to the number of their instances.en
dc.format6
dc.identifier.isbnneuvedeno
dc.identifier.issn1613-0073
dc.identifier.obd43944204
dc.identifier.orcidSieber, Matěj 0009-0005-9406-0585
dc.identifier.orcidŽelezný, Tomáš 0000-0002-0974-7069
dc.identifier.urihttp://hdl.handle.net/11025/60228
dc.language.isoen
dc.project.IDSGS-2022-017
dc.project.ID90254
dc.publisherCEUR-WS
dc.relation.ispartofseries25th Working Notes of the Conference and Labs of the Evaluation Forum, CLEF 2024
dc.subjectSnakeCLEFen
dc.subjectsnake biteen
dc.subjectcomputer visionen
dc.subjectclassificationen
dc.subjectsnake species identificationen
dc.subjectimbalanced dataseten
dc.titleDo Not Lose to Losses for SnakeCLEF2024en
dc.typeStať ve sborníku (D)
dc.typeSTAŤ VE SBORNÍKU
dc.type.statusPublished Version
local.files.count1*
local.files.size4114363*
local.has.filesyes*
local.identifier.eid2-s2.0-85201602020

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
paper-207.pdf
Size:
3.92 MB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: